DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental 3D coherent diffractive imaging from photon-sparse random projections

Abstract

The routine atomic resolution structure determination of single particles is expected to have profound implications for probing structure–function relationships in systems ranging from energy-storage materials to biological molecules. Extremely bright ultrashort-pulse X-ray sources – X-ray free-electron lasers (XFELs) – provide X-rays that can be used to probe ensembles of nearly identical nanoscale particles. When combined with coherent diffractive imaging, these objects can be imaged; however, as the resolution of the images approaches the atomic scale, the measured data are increasingly difficult to obtain and, during an X-ray pulse, the number of photons incident on the 2D detector is much smaller than the number of pixels. This latter concern, the signal `sparsity', materially impedes the application of the method. An experimental analog using a conventional X-ray source is demonstrated and yields signal levels comparable with those expected from single biomolecules illuminated by focused XFEL pulses. The analog experiment provides an invaluable cross check on the fidelity of the reconstructed data that is not available during XFEL experiments. Using these experimental data, it is established that a sparsity of order 1.3 × 10 −3  photons per pixel per frame can be overcome, lending vital insight to the solution of the atomic resolutionmore » XFEL single-particle imaging problem by experimentally demonstrating 3D coherent diffractive imaging from photon-sparse random projections.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1617929
Alternate Identifier(s):
OSTI ID: 1504880
Report Number(s):
BNL-211503-2019-JAAM
Journal ID: ISSN 2052-2525; IUCRAJ; PII: S2052252519002781
Grant/Contract Number:  
SC0004079; SC0016035; SC0017631; AC02-76SF00515; SC0012704
Resource Type:
Published Article
Journal Name:
IUCrJ
Additional Journal Information:
Journal Name: IUCrJ Journal Volume: 6 Journal Issue: 3; Journal ID: ISSN 2052-2525
Publisher:
International Union of Crystallography (IUCr)
Country of Publication:
United Kingdom
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; coherent X-ray diffractive imaging (CXDI); X-ray free-electron lasers; XFELs; phase problem; single particles

Citation Formats

Giewekemeyer, K., Aquila, A., Loh, N. -T. D., Chushkin, Y., Shanks, K. S., Weiss, J. T., Tate, M. W., Philipp, H. T., Stern, S., Vagovic, P., Mehrjoo, M., Teo, C., Barthelmess, M., Zontone, F., Chang, C., Tiberio, R. C., Sakdinawat, A., Williams, G. J., Gruner, S. M., and Mancuso, A. P. Experimental 3D coherent diffractive imaging from photon-sparse random projections. United Kingdom: N. p., 2019. Web. doi:10.1107/S2052252519002781.
Giewekemeyer, K., Aquila, A., Loh, N. -T. D., Chushkin, Y., Shanks, K. S., Weiss, J. T., Tate, M. W., Philipp, H. T., Stern, S., Vagovic, P., Mehrjoo, M., Teo, C., Barthelmess, M., Zontone, F., Chang, C., Tiberio, R. C., Sakdinawat, A., Williams, G. J., Gruner, S. M., & Mancuso, A. P. Experimental 3D coherent diffractive imaging from photon-sparse random projections. United Kingdom. https://doi.org/10.1107/S2052252519002781
Giewekemeyer, K., Aquila, A., Loh, N. -T. D., Chushkin, Y., Shanks, K. S., Weiss, J. T., Tate, M. W., Philipp, H. T., Stern, S., Vagovic, P., Mehrjoo, M., Teo, C., Barthelmess, M., Zontone, F., Chang, C., Tiberio, R. C., Sakdinawat, A., Williams, G. J., Gruner, S. M., and Mancuso, A. P. Wed . "Experimental 3D coherent diffractive imaging from photon-sparse random projections". United Kingdom. https://doi.org/10.1107/S2052252519002781.
@article{osti_1617929,
title = {Experimental 3D coherent diffractive imaging from photon-sparse random projections},
author = {Giewekemeyer, K. and Aquila, A. and Loh, N. -T. D. and Chushkin, Y. and Shanks, K. S. and Weiss, J. T. and Tate, M. W. and Philipp, H. T. and Stern, S. and Vagovic, P. and Mehrjoo, M. and Teo, C. and Barthelmess, M. and Zontone, F. and Chang, C. and Tiberio, R. C. and Sakdinawat, A. and Williams, G. J. and Gruner, S. M. and Mancuso, A. P.},
abstractNote = {The routine atomic resolution structure determination of single particles is expected to have profound implications for probing structure–function relationships in systems ranging from energy-storage materials to biological molecules. Extremely bright ultrashort-pulse X-ray sources – X-ray free-electron lasers (XFELs) – provide X-rays that can be used to probe ensembles of nearly identical nanoscale particles. When combined with coherent diffractive imaging, these objects can be imaged; however, as the resolution of the images approaches the atomic scale, the measured data are increasingly difficult to obtain and, during an X-ray pulse, the number of photons incident on the 2D detector is much smaller than the number of pixels. This latter concern, the signal `sparsity', materially impedes the application of the method. An experimental analog using a conventional X-ray source is demonstrated and yields signal levels comparable with those expected from single biomolecules illuminated by focused XFEL pulses. The analog experiment provides an invaluable cross check on the fidelity of the reconstructed data that is not available during XFEL experiments. Using these experimental data, it is established that a sparsity of order 1.3 × 10 −3  photons per pixel per frame can be overcome, lending vital insight to the solution of the atomic resolution XFEL single-particle imaging problem by experimentally demonstrating 3D coherent diffractive imaging from photon-sparse random projections.},
doi = {10.1107/S2052252519002781},
journal = {IUCrJ},
number = 3,
volume = 6,
place = {United Kingdom},
year = {Wed Mar 20 00:00:00 EDT 2019},
month = {Wed Mar 20 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1107/S2052252519002781

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Schematic of the experiment. The sample, a gold nanostructure, supported on a silicon nitride membrane, was rotated about the y-axis to obtain diffraction patterns at different orientations with respect to the optical axis, z. A first rotation series about the y-axis was followed by an in-plane rotation ofmore » the sample about z and a subsequent second rotation series. The beam attenuation and illumination time were adjusted, so that each data frame contains only about 50 scattered photons. An example of a single diffraction pattern is shown in the inset on the upper left.« less

Save / Share:

Works referenced in this record:

Noise Limits on Reconstructing Diffraction Signals From Random Tomographs
journal, October 2009


Efficient subpixel image registration algorithms
journal, January 2008

  • Guizar-Sicairos, Manuel; Thurman, Samuel T.; Fienup, James R.
  • Optics Letters, Vol. 33, Issue 2
  • DOI: 10.1364/OL.33.000156

Reconstructing three-dimensional protein crystal intensities from sparse unoriented two-axis X-ray diffraction patterns
journal, June 2017

  • Lan, Ti-Yen; Wierman, Jennifer L.; Tate, Mark W.
  • Journal of Applied Crystallography, Vol. 50, Issue 4
  • DOI: 10.1107/S1600576717006537

A minimal view of single-particle imaging with X-ray lasers
journal, July 2014

  • Loh, N. Duane
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 369, Issue 1647
  • DOI: 10.1098/rstb.2013.0328

The Coherent X-ray Imaging Data Bank
journal, August 2012


Solving structure with sparse, randomly-oriented x-ray data
journal, January 2012

  • Philipp, Hugh T.; Ayyer, Kartik; Tate, Mark W.
  • Optics Express, Vol. 20, Issue 12
  • DOI: 10.1364/OE.20.013129

The symmetries of image formation by scattering I Theoretical framework
journal, January 2012

  • Giannakis, Dimitrios; Schwander, Peter; Ourmazd, Abbas
  • Optics Express, Vol. 20, Issue 12
  • DOI: 10.1364/OE.20.012799

Femtosecond X-ray protein nanocrystallography
journal, February 2011

  • Chapman, Henry N.; Fromme, Petra; Barty, Anton
  • Nature, Vol. 470, Issue 7332, p. 73-77
  • DOI: 10.1038/nature09750

High-resolution ab initio three-dimensional x-ray diffraction microscopy
journal, January 2006

  • Chapman, Henry N.; Barty, Anton; Marchesini, Stefano
  • Journal of the Optical Society of America A, Vol. 23, Issue 5
  • DOI: 10.1364/JOSAA.23.001179

Expansion-maximization-compression algorithm with spherical harmonics for single particle imaging with x-ray lasers
journal, May 2016


Coherent X-Ray Diffraction Imaging and Characterization of Strain in Silicon-on-Insulator Nanostructures
journal, June 2014

  • Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred
  • Advanced Materials, Vol. 26, Issue 46
  • DOI: 10.1002/adma.201304511

Solving protein structure from sparse serial microcrystal diffraction data at a storage-ring synchrotron source
journal, July 2018


A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser
journal, April 2016

  • Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep24791

Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging
journal, September 2018


Serial femtosecond crystallography: the first five years
journal, February 2015


Protein crystal structure from non-oriented, single-axis sparse X-ray data
journal, January 2016


Single-particle imaging without symmetry constraints at an X-ray free-electron laser
journal, September 2018


Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source
journal, August 2016

  • Munke, Anna; Andreasson, Jakob; Aquila, Andrew
  • Scientific Data, Vol. 3, Issue 1
  • DOI: 10.1038/sdata.2016.64

Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses
journal, October 2017

  • Kurta, Ruslan P.; Donatelli, Jeffrey J.; Yoon, Chun Hong
  • Physical Review Letters, Vol. 119, Issue 15, Article No. 158102
  • DOI: 10.1103/PhysRevLett.119.158102

Cryptotomography: Reconstructing 3D Fourier Intensities from Randomly Oriented Single-Shot Diffraction Patterns
journal, June 2010


Invited Article: A unified evaluation of iterative projection algorithms for phase retrieval
journal, January 2007

  • Marchesini, S.
  • Review of Scientific Instruments, Vol. 78, Issue 1
  • DOI: 10.1063/1.2403783

Optimal mapping of x-ray laser diffraction patterns into three dimensions using routing algorithms
journal, October 2013


Structure from fleeting illumination of faint spinning objects in flight
journal, November 2008

  • Fung, Russell; Shneerson, Valentin; Saldin, Dilano K.
  • Nature Physics, Vol. 5, Issue 1
  • DOI: 10.1038/nphys1129

Potential for biomolecular imaging with femtosecond X-ray pulses
journal, August 2000

  • Neutze, Richard; Wouts, Remco; van der Spoel, David
  • Nature, Vol. 406, Issue 6797
  • DOI: 10.1038/35021099

Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
journal, June 2017

  • Reddy, Hemanth K. N.; Yoon, Chun Hong; Aquila, Andrew
  • Scientific Data, Vol. 4, Issue 1
  • DOI: 10.1038/sdata.2017.79

Common arc method for diffraction pattern orientation
journal, October 2011

  • Bortel, Gábor; Tegze, Miklós
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 67, Issue 6
  • DOI: 10.1107/S0108767311036269

X-ray image reconstruction from a diffraction pattern alone
journal, October 2003


Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser
journal, September 2017


Orientation determination in single-particle x-ray coherent diffraction imaging experiments
journal, August 2013

  • Yefanov, O. M.; Vartanyants, I. A.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 46, Issue 16
  • DOI: 10.1088/0953-4075/46/16/164013

Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
journal, April 2017


Fourier shell correlation threshold criteria
journal, September 2005


Single-particle XFEL 3D reconstruction of ribosome-size particles based on Fourier slice matching: requirements to reach subnanometer resolution
journal, May 2018

  • Nakano, Miki; Miyashita, Osamu; Jonic, Slavica
  • Journal of Synchrotron Radiation, Vol. 25, Issue 4
  • DOI: 10.1107/S1600577518005568

Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase
journal, June 2017

  • Donatelli, Jeffrey J.; Sethian, James A.; Zwart, Peter H.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 28
  • DOI: 10.1073/pnas.1708217114

A Medium-Format, Mixed-Mode Pixel Array Detector for Kilohertz X-ray Imaging
journal, March 2013


Dragonfly : an implementation of the expand–maximize–compress algorithm for single-particle imaging
journal, June 2016

  • Ayyer, Kartik; Lan, Ti-Yen; Elser, Veit
  • Journal of Applied Crystallography, Vol. 49, Issue 4
  • DOI: 10.1107/S1600576716008165

Real-Space x-ray tomographic reconstruction of randomly oriented objects with sparse data frames
journal, January 2014

  • Ayyer, Kartik; Philipp, Hugh T.; Tate, Mark W.
  • Optics Express, Vol. 22, Issue 3
  • DOI: 10.1364/OE.22.002403

Diffraction imaging of single particles and biomolecules
journal, October 2003


Three-dimensional coherent diffractive imaging on non-periodic specimens at the ESRF beamline ID10
journal, March 2014


Reconstruction algorithm for single-particle diffraction imaging experiments
journal, August 2009


A multiple-common-lines method to determine the orientation of snapshot diffraction patterns from single particles
journal, June 2014

  • Zhou, Liang; Zhang, Tian-Yi; Liu, Zhong-Chuan
  • Acta Crystallographica Section A Foundations and Advances, Vol. 70, Issue 4
  • DOI: 10.1107/S2053273314007049

Structure determination from single molecule X-ray scattering with three photons per image
journal, June 2018

  • von Ardenne, Benjamin; Mechelke, Martin; Grubmüller, Helmut
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-04830-4

The Protein Data Bank
journal, January 2000


Iterative phasing for fluctuation X-ray scattering
journal, August 2015

  • Donatelli, Jeffrey J.; Zwart, Peter H.; Sethian, James A.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 33
  • DOI: 10.1073/pnas.1513738112

Atomic structure of a single large biomolecule from diffraction patterns of random orientations
journal, July 2012


The linac coherent light source single particle imaging road map
journal, July 2015

  • Aquila, A.; Barty, A.; Bostedt, C.
  • Structural Dynamics, Vol. 2, Issue 4
  • DOI: 10.1063/1.4918726

Three-dimensional reconstruction for coherent diffraction patterns obtained by XFEL
journal, June 2017

  • Nakano, Miki; Miyashita, Osamu; Jonic, Slavica
  • Journal of Synchrotron Radiation, Vol. 24, Issue 4
  • DOI: 10.1107/S1600577517007767

Single molecule imaging using X-ray free electron lasers
journal, October 2016


XFELs for structure and dynamics in biology
journal, May 2017


Phase-retrieval stagnation problems and solutions
journal, January 1986

  • Fienup, J. R.; Wackerman, C. C.
  • Journal of the Optical Society of America A, Vol. 3, Issue 11
  • DOI: 10.1364/JOSAA.3.001897

A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser
text, January 2016

  • Yoon, Chun Hong; Yurkov, Mikhail; Schneidmiller, Evgeny Alexanrdovich
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2016-01805

Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source
text, January 2016

  • Munke, Anna; Andreasson, Jakob; Aquila, Andrew
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2016-02771

Cryptotomography: Reconstructing 3D Fourier Intensities from Randomly Oriented Single-Shot Diffraction Patterns
text, January 2010

  • Loh, N. D.; Bogan, M. J.; Elser, V.
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/phppubdb-14441

Works referencing / citing this record:

Experimental 3D Coherent Diffractive Imaging from photon-sparse random projections
dataset, January 2019

  • Giewekemeyer, Giewekemeyer; K., K.
  • Coherent X-ray Imaging Data Bank (Lawrence Berkeley National Laboratory); European XFEL
  • DOI: 10.11577/1498641

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.