DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells

Abstract

Abstract Colloidal quantum dots (CQDs) are of interest in light of their solution‐processing and bandgap tuning. Advances in the performance of CQD optoelectronic devices require fine control over the properties of each layer in the device materials stack. This is particularly challenging in the present best CQD solar cells, since these employ a p‐type hole‐transport layer (HTL) implemented using 1,2‐ethanedithiol (EDT) ligand exchange on top of the CQD active layer. It is established that the high reactivity of EDT causes a severe chemical modification to the active layer that deteriorates charge extraction. By combining elemental mapping with the spatial charge collection efficiency in CQD solar cells, the key materials interface dominating the subpar performance of prior CQD PV devices is demonstrated. This motivates to develop a chemically orthogonal HTL that consists of malonic‐acid‐crosslinked CQDs. The new crosslinking strategy preserves the surface chemistry of the active layer beneath, and at the same time provides the needed efficient charge extraction. The new HTL enables a 1.4× increase in charge carrier diffusion length in the active layer; and as a result leads to an improvement in power conversion efficiency to 13.0% compared to EDT standard cells (12.2%).

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [3];  [1];  [3];  [1];  [2];  [1]; ORCiD logo [1]
  1. Department of Electrical and Computer Engineering University of Toronto 10 King's College Road Toronto Ontario M5S 3G4 Canada
  2. Department of Material Science and Engineering University of Toronto 184 College St Toronto Ontario M5S 3E4 Canada
  3. Materials Science and Engineering Division National Institute of Standards and Technology (NIST) Gaithersburg MD 20899 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1616222
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 32 Journal Issue: 17; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Biondi, Margherita, Choi, Min‐Jae, Ouellette, Olivier, Baek, Se‐Woong, Todorović, Petar, Sun, Bin, Lee, Seungjin, Wei, Mingyang, Li, Peicheng, Kirmani, Ahmad R., Sagar, Laxmi K., Richter, Lee J., Hoogland, Sjoerd, Lu, Zheng‐Hong, García de Arquer, F. Pelayo, and Sargent, Edward H. A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells. Germany: N. p., 2020. Web. doi:10.1002/adma.201906199.
Biondi, Margherita, Choi, Min‐Jae, Ouellette, Olivier, Baek, Se‐Woong, Todorović, Petar, Sun, Bin, Lee, Seungjin, Wei, Mingyang, Li, Peicheng, Kirmani, Ahmad R., Sagar, Laxmi K., Richter, Lee J., Hoogland, Sjoerd, Lu, Zheng‐Hong, García de Arquer, F. Pelayo, & Sargent, Edward H. A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells. Germany. https://doi.org/10.1002/adma.201906199
Biondi, Margherita, Choi, Min‐Jae, Ouellette, Olivier, Baek, Se‐Woong, Todorović, Petar, Sun, Bin, Lee, Seungjin, Wei, Mingyang, Li, Peicheng, Kirmani, Ahmad R., Sagar, Laxmi K., Richter, Lee J., Hoogland, Sjoerd, Lu, Zheng‐Hong, García de Arquer, F. Pelayo, and Sargent, Edward H. Fri . "A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells". Germany. https://doi.org/10.1002/adma.201906199.
@article{osti_1616222,
title = {A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells},
author = {Biondi, Margherita and Choi, Min‐Jae and Ouellette, Olivier and Baek, Se‐Woong and Todorović, Petar and Sun, Bin and Lee, Seungjin and Wei, Mingyang and Li, Peicheng and Kirmani, Ahmad R. and Sagar, Laxmi K. and Richter, Lee J. and Hoogland, Sjoerd and Lu, Zheng‐Hong and García de Arquer, F. Pelayo and Sargent, Edward H.},
abstractNote = {Abstract Colloidal quantum dots (CQDs) are of interest in light of their solution‐processing and bandgap tuning. Advances in the performance of CQD optoelectronic devices require fine control over the properties of each layer in the device materials stack. This is particularly challenging in the present best CQD solar cells, since these employ a p‐type hole‐transport layer (HTL) implemented using 1,2‐ethanedithiol (EDT) ligand exchange on top of the CQD active layer. It is established that the high reactivity of EDT causes a severe chemical modification to the active layer that deteriorates charge extraction. By combining elemental mapping with the spatial charge collection efficiency in CQD solar cells, the key materials interface dominating the subpar performance of prior CQD PV devices is demonstrated. This motivates to develop a chemically orthogonal HTL that consists of malonic‐acid‐crosslinked CQDs. The new crosslinking strategy preserves the surface chemistry of the active layer beneath, and at the same time provides the needed efficient charge extraction. The new HTL enables a 1.4× increase in charge carrier diffusion length in the active layer; and as a result leads to an improvement in power conversion efficiency to 13.0% compared to EDT standard cells (12.2%).},
doi = {10.1002/adma.201906199},
journal = {Advanced Materials},
number = 17,
volume = 32,
place = {Germany},
year = {Fri Mar 20 00:00:00 EDT 2020},
month = {Fri Mar 20 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adma.201906199

Citation Metrics:
Cited by: 49 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High‐Efficiency PbS Quantum‐Dot Solar Cells with Greatly Simplified Fabrication Processing via “Solvent‐Curing”
journal, May 2018


Advanced electrical simulation of thin film solar cells
journal, May 2013


Emergence of colloidal quantum-dot light-emitting technologies
journal, December 2012

  • Shirasaki, Yasuhiro; Supran, Geoffrey J.; Bawendi, Moungi G.
  • Nature Photonics, Vol. 7, Issue 1
  • DOI: 10.1038/nphoton.2012.328

Building devices from colloidal quantum dots
journal, August 2016


Increased efficiency in pn-junction PbS QD solar cells via NaHS treatment of the p-type layer
journal, March 2017

  • Speirs, Mark J.; Balazs, Daniel M.; Dirin, Dmitry N.
  • Applied Physics Letters, Vol. 110, Issue 10
  • DOI: 10.1063/1.4978444

Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol
journal, January 2008

  • Luther, Joseph M.; Law, Matt; Song, Qing
  • ACS Nano, Vol. 2, Issue 2
  • DOI: 10.1021/nn7003348

Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics
journal, January 2020

  • Choi, Min-Jae; García de Arquer, F. Pelayo; Proppe, Andrew H.
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-019-13437-2

Synergistic photocurrent addition in hybrid quantum dot: Bulk heterojunction solar cells
journal, April 2015


Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution
journal, November 2003

  • Hines, M. A.; Scholes, G. D.
  • Advanced Materials, Vol. 15, Issue 21, p. 1844-1849
  • DOI: 10.1002/adma.200305395

The Effect of Al 2 O 3 Barrier Layers in TiO 2 /Dye/CuSCN Photovoltaic Cells Explored by Recombination and DOS Characterization Using Transient Photovoltage Measurements
journal, March 2005

  • O'Regan, B. C.; Scully, S.; Mayer, A. C.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 10
  • DOI: 10.1021/jp0468049

2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids
journal, April 2018


High Performance Colloidal Quantum Dot Photovoltaics by Controlling Protic Solvents in Ligand Exchange
journal, April 2017

  • Song, Jung Hoon; Choi, Hyekyoung; Kim, Yong-Hyun
  • Advanced Energy Materials, Vol. 7, Issue 15
  • DOI: 10.1002/aenm.201700301

Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
journal, October 2017

  • Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.
  • Science Advances, Vol. 3, Issue 10
  • DOI: 10.1126/sciadv.aao4204

Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control
journal, May 2012

  • Sun, Liangfeng; Choi, Joshua J.; Stachnik, David
  • Nature Nanotechnology, Vol. 7, Issue 6
  • DOI: 10.1038/nnano.2012.63

Towards the commercialization of colloidal quantum dot solar cells: perspectives on device structures and manufacturing
journal, January 2020

  • Lee, Hyunho; Song, Hyung-Jun; Shim, Moonsub
  • Energy & Environmental Science, Vol. 13, Issue 2
  • DOI: 10.1039/C9EE03348C

In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering
journal, March 2018


Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification
journal, May 2017

  • Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15257

Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental–Theoretical Study
journal, June 2016

  • Endres, James; Egger, David A.; Kulbak, Michael
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 14
  • DOI: 10.1021/acs.jpclett.6b00946

Breaking the Open-Circuit Voltage Deficit Floor in PbS Quantum Dot Solar Cells through Synergistic Ligand and Architecture Engineering
journal, May 2017


The role of surface passivation for efficient and photostable PbS quantum dot solar cells
journal, April 2016


Slow recombination in quantum dot solid solar cell using p–i–n architecture with organic p-type hole transport material
journal, January 2015

  • Zhang, Xiaoliang; Justo, Yolanda; Maes, Jorick
  • Journal of Materials Chemistry A, Vol. 3, Issue 41
  • DOI: 10.1039/C5TA07111A

Overcoming the Ambient Manufacturability-Scalability-Performance Bottleneck in Colloidal Quantum Dot Photovoltaics
journal, July 2018

  • Kirmani, Ahmad R.; Sheikh, Arif D.; Niazi, Muhammad R.
  • Advanced Materials, Vol. 30, Issue 35
  • DOI: 10.1002/adma.201801661

Depleted-Heterojunction Colloidal Quantum Dot Solar Cells
journal, May 2010

  • Pattantyus-Abraham, Andras G.; Kramer, Illan J.; Barkhouse, Aaron R.
  • ACS Nano, Vol. 4, Issue 6
  • DOI: 10.1021/nn100335g

Solution-Processed, High-Speed, and High-Quantum-Efficiency Quantum Dot Infrared Photodetectors
journal, June 2016


High-Efficiency Air-Stable Colloidal Quantum Dot Solar Cells Based on a Potassium-Doped ZnO Electron-Accepting Layer
journal, September 2018

  • Azmi, Randi; Seo, Gabseok; Ahn, Tae Kyu
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 41
  • DOI: 10.1021/acsami.8b12577

Measuring Charge Carrier Diffusion in Coupled Colloidal Quantum Dot Solids
journal, May 2013

  • Zhitomirsky, David; Voznyy, Oleksandr; Hoogland, Sjoerd
  • ACS Nano, Vol. 7, Issue 6
  • DOI: 10.1021/nn402197a

Solid-state-ligand-exchange free quantum dot ink-based solar cells with an efficiency of 10.9%
journal, January 2018

  • Aqoma, Havid; Jang, Sung-Yeon
  • Energy & Environmental Science, Vol. 11, Issue 6
  • DOI: 10.1039/C8EE00278A

Spatial Collection in Colloidal Quantum Dot Solar Cells
journal, November 2019

  • Ouellette, Olivier; Lesage‐Landry, Antoine; Scheffel, Benjamin
  • Advanced Functional Materials, Vol. 30, Issue 1
  • DOI: 10.1002/adfm.201908200

Effect of Anchoring Groups on Single-Molecule Conductance:  Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules
journal, December 2006

  • Chen, Fang; Li, Xiulan; Hihath, Joshua
  • Journal of the American Chemical Society, Vol. 128, Issue 49
  • DOI: 10.1021/ja065864k

Nika : software for two-dimensional data reduction
journal, March 2012


Stoichiometric control of the density of states in PbS colloidal quantum dot solids
journal, September 2017

  • Balazs, Daniel M.; Bijlsma, Klaas I.; Fang, Hong-Hua
  • Science Advances, Vol. 3, Issue 9
  • DOI: 10.1126/sciadv.aao1558

Modelling polycrystalline semiconductor solar cells
journal, February 2000


The Spatial Collection Efficiency of Charge Carriers in Photovoltaic and Photoelectrochemical Cells
journal, February 2018


Finding and Fixing Traps in II–VI and III–V Colloidal Quantum Dots: The Importance of Z-Type Ligand Passivation
journal, October 2018

  • Kirkwood, Nicholas; Monchen, Julius O. V.; Crisp, Ryan W.
  • Journal of the American Chemical Society, Vol. 140, Issue 46
  • DOI: 10.1021/jacs.8b07783

Improved Processability and Efficiency of Colloidal Quantum Dot Solar Cells Based on Organic Hole Transport Layers
journal, May 2018

  • Aqoma, Havid; Mubarok, Muhibullah Al; Lee, Wooseop
  • Advanced Energy Materials, Vol. 8, Issue 23
  • DOI: 10.1002/aenm.201800572

PbS Quantum Dot Solar Cells Integrated with Sol–Gel-Derived ZnO as an n-Type Charge-Selective Layer
journal, July 2014

  • Park, Hye-Yun; Ryu, Ilhwan; Kim, Jinhyun
  • The Journal of Physical Chemistry C, Vol. 118, Issue 31
  • DOI: 10.1021/jp504156c

Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications
journal, November 2019


Low-Temperature Growth of All-Carbon Graphdiyne on a Silicon Anode for High-Performance Lithium-Ion Batteries
journal, May 2018


Schottky Solar Cells Based on Colloidal Nanocrystal Films
journal, October 2008

  • Luther, Joseph M.; Law, Matt; Beard, Matthew C.
  • Nano Letters, Vol. 8, Issue 10
  • DOI: 10.1021/nl802476m

Improved performance and stability in quantum dot solar cells through band alignment engineering
journal, May 2014

  • Chuang, Chia-Hao M.; Brown, Patrick R.; Bulović, Vladimir
  • Nature Materials, Vol. 13, Issue 8, p. 796-801
  • DOI: 10.1038/nmat3984

Suppressed Interfacial Charge Recombination of PbS Quantum Dot Photovoltaics by Graphene Incorporated into ZnO Nanoparticles
journal, June 2018

  • Yang, Jonghee; Lee, Jongtaek; Lee, Junyoung
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 30
  • DOI: 10.1021/acsami.8b05556

Effect of Solvent Environment on Colloidal-Quantum-Dot Solar-Cell Manufacturability and Performance
journal, June 2014

  • Kirmani, Ahmad R.; Carey, Graham H.; Abdelsamie, Maged
  • Advanced Materials, Vol. 26, Issue 27
  • DOI: 10.1002/adma.201400577

Spatial collection efficiency of a solar cell
journal, January 1995

  • Sinkkonen, J.; Ruokolainen, J.; Uotila, P.
  • Applied Physics Letters, Vol. 66, Issue 2
  • DOI: 10.1063/1.113135

Low-Temperature-Processed 9% Colloidal Quantum Dot Photovoltaic Devices through Interfacial Management of p-n Heterojunction
journal, February 2016

  • Azmi, Randi; Aqoma, Havid; Hadmojo, Wisnu Tantyo
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502146

Amplified Generation of Hot Electrons and Quantum Surface Effects in Nanoparticle Dimers with Plasmonic Hot Spots
journal, August 2016

  • Besteiro, Lucas V.; Govorov, Alexander O.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 34
  • DOI: 10.1021/acs.jpcc.6b05968

Optical gain in colloidal quantum dots achieved with direct-current electrical pumping
journal, November 2017

  • Lim, Jaehoon; Park, Young-Shin; Klimov, Victor I.
  • Nature Materials, Vol. 17, Issue 1
  • DOI: 10.1038/nmat5011

ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells
journal, February 2013

  • Jean, Joel; Chang, Sehoon; Brown, Patrick R.
  • Advanced Materials, Vol. 25, Issue 20
  • DOI: 10.1002/adma.201204192

Activated Electron-Transport Layers for Infrared Quantum Dot Optoelectronics
journal, May 2018

  • Choi, Jongmin; Jo, Jea Woong; de Arquer, F. Pelayo García
  • Advanced Materials, Vol. 30, Issue 29
  • DOI: 10.1002/adma.201801720