DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Early prediction of antigenic transitions for influenza A/H3N2

Abstract

Influenza A/H3N2 is a rapidly evolving virus which experiences major antigenic transitions every two to eight years. Anticipating the timing and outcome of transitions is critical to developing effective seasonal influenza vaccines. Using a published phylodynamic model of influenza transmission, we identified indicators of future evolutionary success for an emerging antigenic cluster and quantified fundamental trade-offs in our ability to make such predictions. The eventual fate of a new cluster depends on its initial epidemiological growth rate––which is a function of mutational load and population susceptibility to the cluster––along with the variance in growth rate across co-circulating viruses. Logistic regression can predict whether a cluster at 5% relative frequency will eventually succeed with ~80% sensitivity, providing up to eight months advance warning. As a cluster expands, the predictions improve while the lead-time for vaccine development and other interventions decreases. However, attempts to make comparable predictions from 12 years of empirical influenza surveillance data, which are far sparser and more coarse-grained, achieve only 56% sensitivity. By expanding influenza surveillance to obtain more granular estimates of the frequencies of and population-wide susceptibility to emerging viruses, we can better anticipate major antigenic transitions. This provides added incentives for accelerating the vaccine production cyclemore » to reduce the lead time required for strain selection.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]
  1. Univ. of Texas, Austin, TX (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Fred Hutchinson Cancer Research Center, Seattle, WA (United States)
  3. Univ. of Texas, Austin, TX (United States); Santa Fe Inst. (SFI), Santa Fe, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
National Defense Science & Engineering Graduate Fellowship (NDSEG) Program; National Institutes of Health (NIH); National Institute of General Medical Sciences (NIGMS); National Institute of Allergy and Infectious Diseases (NIAID)
OSTI Identifier:
1604006
Report Number(s):
LA-UR-19-29731
Journal ID: ISSN 1553-7358
Grant/Contract Number:  
89233218CNA000001; U01 GM087719
Resource Type:
Accepted Manuscript
Journal Name:
PLoS Computational Biology (Online)
Additional Journal Information:
Journal Name: PLoS Computational Biology (Online); Journal Volume: 16; Journal Issue: 2; Journal ID: ISSN 1553-7358
Publisher:
Public Library of Science
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 97 MATHEMATICS AND COMPUTING; Biological Science; Computer Science

Citation Formats

Castro, Lauren Ann, Bedford, Trevor, and Ancel Meyers, Lauren. Early prediction of antigenic transitions for influenza A/H3N2. United States: N. p., 2020. Web. doi:10.1371/journal.pcbi.1007683.
Castro, Lauren Ann, Bedford, Trevor, & Ancel Meyers, Lauren. Early prediction of antigenic transitions for influenza A/H3N2. United States. https://doi.org/10.1371/journal.pcbi.1007683
Castro, Lauren Ann, Bedford, Trevor, and Ancel Meyers, Lauren. Tue . "Early prediction of antigenic transitions for influenza A/H3N2". United States. https://doi.org/10.1371/journal.pcbi.1007683. https://www.osti.gov/servlets/purl/1604006.
@article{osti_1604006,
title = {Early prediction of antigenic transitions for influenza A/H3N2},
author = {Castro, Lauren Ann and Bedford, Trevor and Ancel Meyers, Lauren},
abstractNote = {Influenza A/H3N2 is a rapidly evolving virus which experiences major antigenic transitions every two to eight years. Anticipating the timing and outcome of transitions is critical to developing effective seasonal influenza vaccines. Using a published phylodynamic model of influenza transmission, we identified indicators of future evolutionary success for an emerging antigenic cluster and quantified fundamental trade-offs in our ability to make such predictions. The eventual fate of a new cluster depends on its initial epidemiological growth rate––which is a function of mutational load and population susceptibility to the cluster––along with the variance in growth rate across co-circulating viruses. Logistic regression can predict whether a cluster at 5% relative frequency will eventually succeed with ~80% sensitivity, providing up to eight months advance warning. As a cluster expands, the predictions improve while the lead-time for vaccine development and other interventions decreases. However, attempts to make comparable predictions from 12 years of empirical influenza surveillance data, which are far sparser and more coarse-grained, achieve only 56% sensitivity. By expanding influenza surveillance to obtain more granular estimates of the frequencies of and population-wide susceptibility to emerging viruses, we can better anticipate major antigenic transitions. This provides added incentives for accelerating the vaccine production cycle to reduce the lead time required for strain selection.},
doi = {10.1371/journal.pcbi.1007683},
journal = {PLoS Computational Biology (Online)},
number = 2,
volume = 16,
place = {United States},
year = {Tue Feb 18 00:00:00 EST 2020},
month = {Tue Feb 18 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Absolute humidity modulates influenza survival, transmission, and seasonality
journal, February 2009

  • Shaman, J.; Kohn, M.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 9
  • DOI: 10.1073/pnas.0806852106

Influenza emergence in the face of evolutionary constraints
journal, July 2011

  • Kucharski, Adam; Gog, Julia R.
  • Proceedings of the Royal Society B: Biological Sciences, Vol. 279, Issue 1729
  • DOI: 10.1098/rspb.2011.1168

Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses
journal, March 2016

  • Neher, Richard A.; Bedford, Trevor; Daniels, Rodney S.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 12
  • DOI: 10.1073/pnas.1525578113

Emergent Neutrality in Adaptive Asexual Evolution
journal, September 2011


Universal or Specific? A Modeling-Based Comparison of Broad-Spectrum Influenza Vaccines against Conventional, Strain-Matched Vaccines
journal, December 2016


Identification of Low- and High-Impact Hemagglutinin Amino Acid Substitutions That Drive Antigenic Drift of Influenza A(H1N1) Viruses
journal, April 2016


GISAID: Global initiative on sharing all influenza data – from vision to reality
journal, March 2017


Infectious disease management must be evolutionary
journal, July 2017


Unifying the Epidemiological and Evolutionary Dynamics of Pathogens
journal, January 2004


Antibody landscapes after influenza virus infection or vaccination
journal, November 2014


Positive selection on the H3 hemagglutinin gene of human influenza virus A
journal, November 1999


Predicting evolution
journal, February 2017

  • Lässig, Michael; Mustonen, Ville; Walczak, Aleksandra M.
  • Nature Ecology & Evolution, Vol. 1, Issue 3
  • DOI: 10.1038/s41559-017-0077

Clonal Interference in the Evolution of Influenza
journal, July 2012


Prediction is worth a shot
journal, February 2014


Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates
journal, March 2013


Global circulation patterns of seasonal influenza viruses vary with antigenic drift
journal, June 2015

  • Bedford, Trevor; Riley, Steven; Barr, Ian G.
  • Nature, Vol. 523, Issue 7559
  • DOI: 10.1038/nature14460

Variable influenza vaccine effectiveness by subtype: a systematic review and meta-analysis of test-negative design studies
journal, August 2016

  • Belongia, Edward A.; Simpson, Melissa D.; King, Jennifer P.
  • The Lancet Infectious Diseases, Vol. 16, Issue 8
  • DOI: 10.1016/S1473-3099(16)00129-8

Global Migration Dynamics Underlie Evolution and Persistence of Human Influenza A (H3N2)
journal, May 2010


Integrating influenza antigenic dynamics with molecular evolution
journal, February 2014


Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies
journal, June 2010

  • Sanjuán, Rafael
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 365, Issue 1548
  • DOI: 10.1098/rstb.2010.0063

The Genomic Rate of Molecular Adaptation of the Human Influenza A Virus
journal, March 2011

  • Bhatt, Samir; Holmes, Edward C.; Pybus, Oliver G.
  • Molecular Biology and Evolution, Vol. 28, Issue 9
  • DOI: 10.1093/molbev/msr044

nextflu: real-time tracking of seasonal influenza virus evolution in humans
journal, June 2015


Mapping the Antigenic and Genetic Evolution of Influenza Virus
journal, July 2004


Immune History and Influenza Vaccine Effectiveness
journal, May 2018


A systematic analysis of performance measures for classification tasks
journal, July 2009


Forecasting Epidemiological and Evolutionary Dynamics of Infectious Diseases
journal, October 2016

  • Gandon, Sylvain; Day, Troy; Metcalf, C. Jessica E.
  • Trends in Ecology & Evolution, Vol. 31, Issue 10
  • DOI: 10.1016/j.tree.2016.07.010

Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations
journal, February 2012

  • Good, B. H.; Rouzine, I. M.; Balick, D. J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 13
  • DOI: 10.1073/pnas.1119910109

The annual impact of seasonal influenza in the US: Measuring disease burden and costs
journal, June 2007

  • Molinari, Noelle-Angelique M.; Ortega-Sanchez, Ismael R.; Messonnier, Mark L.
  • Vaccine, Vol. 25, Issue 27, p. 5086-5096
  • DOI: 10.1016/j.vaccine.2007.03.046

Understanding the dynamics of rapidly evolving pathogens through modeling the tempo of antigenic change: Influenza as a case study
journal, June 2009


How to Infer Relative Fitness from a Sample of Genomic Sequences
journal, April 2014


Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2
journal, February 2014


Impact of cross-protective vaccines on epidemiological and evolutionary dynamics of influenza
journal, February 2012

  • Arinaminpathy, N.; Ratmann, O.; Koelle, K.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 8
  • DOI: 10.1073/pnas.1113342109

Estimates of the Transmissibility of the 1968 (Hong Kong) Influenza Pandemic: Evidence of Increased Transmissibility Between Successive Waves
journal, December 2009

  • Jackson, Charlotte; Vynnycky, Emilia; Mangtani, Punam
  • American Journal of Epidemiology, Vol. 171, Issue 4
  • DOI: 10.1093/aje/kwp394

Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution
journal, March 2007

  • Shih, A. C. -C.; Hsiao, T. -C.; Ho, M. -S.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 15
  • DOI: 10.1073/pnas.0701396104

A predictive fitness model for influenza
journal, February 2014


A global initiative on sharing avian flu data
journal, August 2006

  • Bogner, Peter; Capua, Ilaria; Lipman, David J.
  • Nature, Vol. 442, Issue 7106
  • DOI: 10.1038/442981a

Influenza vaccine: The challenge of antigenic drift
journal, September 2007


The impact of seasonal and year-round transmission regimes on the evolution of influenza A virus
journal, December 2010

  • Adams, Ben; McHardy, Alice Carolyn
  • Proceedings of the Royal Society B: Biological Sciences, Vol. 278, Issue 1716
  • DOI: 10.1098/rspb.2010.2191

Inferring Stabilizing Mutations from Protein Phylogenies: Application to Influenza Hemagglutinin
journal, April 2009


The evolution of epidemic influenza
journal, January 2007

  • Nelson, Martha I.; Holmes, Edward C.
  • Nature Reviews Genetics, Vol. 8, Issue 3
  • DOI: 10.1038/nrg2053

Canalization of the evolutionary trajectory of the human influenza virus
journal, April 2012


HER2 Molecular Marker Scoring Using Transfer Learning and Decision Level Fusion
journal, March 2021


Predictive Modeling of Influenza Shows the Promise of Applied Evolutionary Biology
journal, February 2018

  • Morris, Dylan H.; Gostic, Katelyn M.; Pompei, Simone
  • Trends in Microbiology, Vol. 26, Issue 2
  • DOI: 10.1016/j.tim.2017.09.004

Time Lines of Infection and Disease in Human Influenza: A Review of Volunteer Challenge Studies
journal, January 2008

  • Carrat, Fabrice; Vergu, Elisabeta; Ferguson, Neil M.
  • American Journal of Epidemiology, Vol. 167, Issue 7
  • DOI: 10.1093/aje/kwm375

Explaining the geographical origins of seasonal influenza A (H3N2)
journal, September 2016

  • Wen, Frank; Bedford, Trevor; Cobey, Sarah
  • Proceedings of the Royal Society B: Biological Sciences, Vol. 283, Issue 1838
  • DOI: 10.1098/rspb.2016.1312

Quantifying the Impact of Immune Escape on Transmission Dynamics of Influenza
journal, October 2009


Kinetics of Influenza A Virus Infection in Humans
journal, July 2006

  • Baccam, P.; Beauchemin, C.; Macken, C. A.
  • Journal of Virology, Vol. 80, Issue 15
  • DOI: 10.1128/jvi.01623-05

Genome Sequence of a Dengue Virus Serotype 2 Strain Identified during the 2019 Outbreak in Bangladesh
journal, January 2021

  • Malaker, Roly; Sajib, Mohammad S. I.; Malaker, Apurba R.
  • Microbiology Resource Announcements, Vol. 10, Issue 1
  • DOI: 10.1128/mra.01246-20

Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature
journal, September 2014

  • Biggerstaff, Matthew; Cauchemez, Simon; Reed, Carrie
  • BMC Infectious Diseases, Vol. 14, Issue 1
  • DOI: 10.1186/1471-2334-14-480

Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses
text, January 2016

  • Neher, Richard A.; Bedford, Trevor; Daniels, Rodney S.
  • National Academy of Sciences
  • DOI: 10.5451/unibas-ep53979

Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates
text, January 2013

  • Tamerius, James D.; Shaman, Jeffrey L.; Alonso, Wladmir J.
  • Columbia University
  • DOI: 10.7916/d8hq48xv

Nextstrain: real-time tracking of pathogen evolution
journal, May 2018


nextflu: real-time tracking of seasonal influenza virus evolution in humans
text, January 2015


Understanding the dynamics of rapidly evolving pathogens through modeling the tempo of antigenic change: Influenza as a case study
journal, June 2009


A systematic analysis of performance measures for classification tasks
journal, July 2009


Predictive Modeling of Influenza Shows the Promise of Applied Evolutionary Biology
journal, February 2018

  • Morris, Dylan H.; Gostic, Katelyn M.; Pompei, Simone
  • Trends in Microbiology, Vol. 26, Issue 2
  • DOI: 10.1016/j.tim.2017.09.004

Forecasting Epidemiological and Evolutionary Dynamics of Infectious Diseases
journal, October 2016

  • Gandon, Sylvain; Day, Troy; Metcalf, C. Jessica E.
  • Trends in Ecology & Evolution, Vol. 31, Issue 10
  • DOI: 10.1016/j.tree.2016.07.010

The annual impact of seasonal influenza in the US: Measuring disease burden and costs
journal, June 2007

  • Molinari, Noelle-Angelique M.; Ortega-Sanchez, Ismael R.; Messonnier, Mark L.
  • Vaccine, Vol. 25, Issue 27, p. 5086-5096
  • DOI: 10.1016/j.vaccine.2007.03.046

Influenza vaccine: The challenge of antigenic drift
journal, September 2007


Methodological evolution of influenza vaccine effectiveness assessment
journal, August 2016


A predictive fitness model for influenza
journal, February 2014


The evolution of epidemic influenza
journal, January 2007

  • Nelson, Martha I.; Holmes, Edward C.
  • Nature Reviews Genetics, Vol. 8, Issue 3
  • DOI: 10.1038/nrg2053

Predicting evolution
journal, February 2017

  • Lässig, Michael; Mustonen, Ville; Walczak, Aleksandra M.
  • Nature Ecology & Evolution, Vol. 1, Issue 3
  • DOI: 10.1038/s41559-017-0077

Infectious disease management must be evolutionary
journal, July 2017


Absolute humidity modulates influenza survival, transmission, and seasonality
journal, February 2009

  • Shaman, J.; Kohn, M.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 9
  • DOI: 10.1073/pnas.0806852106

Impact of cross-protective vaccines on epidemiological and evolutionary dynamics of influenza
journal, February 2012

  • Arinaminpathy, N.; Ratmann, O.; Koelle, K.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 8
  • DOI: 10.1073/pnas.1113342109

Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations
journal, February 2012

  • Good, B. H.; Rouzine, I. M.; Balick, D. J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 13
  • DOI: 10.1073/pnas.1119910109

Residence Near Power Lines and Mortality From Neurodegenerative Diseases: Longitudinal Study of the Swiss Population
journal, November 2008

  • Huss, A.; Spoerri, A.; Egger, M.
  • American Journal of Epidemiology, Vol. 169, Issue 2
  • DOI: 10.1093/aje/kwn297

Estimates of the Transmissibility of the 1968 (Hong Kong) Influenza Pandemic: Evidence of Increased Transmissibility Between Successive Waves
journal, December 2009

  • Jackson, Charlotte; Vynnycky, Emilia; Mangtani, Punam
  • American Journal of Epidemiology, Vol. 171, Issue 4
  • DOI: 10.1093/aje/kwp394

The Genomic Rate of Molecular Adaptation of the Human Influenza A Virus
journal, March 2011

  • Bhatt, Samir; Holmes, Edward C.; Pybus, Oliver G.
  • Molecular Biology and Evolution, Vol. 28, Issue 9
  • DOI: 10.1093/molbev/msr044

Positive selection on the H3 hemagglutinin gene of human influenza virus A
journal, November 1999


The impact of seasonal and year-round transmission regimes on the evolution of influenza A virus
journal, December 2010

  • Adams, Ben; McHardy, Alice Carolyn
  • Proceedings of the Royal Society B: Biological Sciences, Vol. 278, Issue 1716
  • DOI: 10.1098/rspb.2010.2191

Influenza emergence in the face of evolutionary constraints
journal, July 2011

  • Kucharski, Adam; Gog, Julia R.
  • Proceedings of the Royal Society B: Biological Sciences, Vol. 279, Issue 1729
  • DOI: 10.1098/rspb.2011.1168

Unifying the Epidemiological and Evolutionary Dynamics of Pathogens
journal, January 2004


Antibody landscapes after influenza virus infection or vaccination
journal, November 2014


Computational Prediction of Vaccine Strains for Human Influenza A (H3N2) Viruses
journal, August 2014

  • Steinbruck, L.; Klingen, T. R.; McHardy, A. C.
  • Journal of Virology, Vol. 88, Issue 20
  • DOI: 10.1128/jvi.01861-14

Global Migration Dynamics Underlie Evolution and Persistence of Human Influenza A (H3N2)
journal, May 2010


Emergent Neutrality in Adaptive Asexual Evolution
journal, September 2011


Immune History and Influenza Vaccine Effectiveness
journal, May 2018


Canalization of the evolutionary trajectory of the human influenza virus
preprint, January 2011


How to infer relative fitness from a sample of genomic sequences
preprint, January 2012


Integrating influenza antigenic dynamics with molecular evolution
preprint, January 2013


Predicting evolution from the shape of genealogical trees
journal, November 2014

  • Neher, Richard A.; Russell, Colin A.; Shraiman, Boris I.
  • eLife, Vol. 3
  • DOI: 10.7554/elife.03568