skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on November 5, 2020

Title: Electrical decoupling of microbial electrochemical reactions enables spontaneous H 2 evolution

Abstract

The uphill reaction of H 2 evolution was made possible by harvesting wastewater energy using electrical circuiting.

Authors:
ORCiD logo [1];  [2];  [1]; ORCiD logo [1];  [3];  [3];  [4]; ORCiD logo [1]
  1. Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, USA
  2. Departamento de Engenharia Hidráulica e Ambiental, Universidade Federal do Ceará, Brazil
  3. National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA
  4. The Earth Institute and School of International and Public Affairs, Columbia University, New York, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1576020
Grant/Contract Number:  
XFF-8-82229-01
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Name: Energy & Environmental Science; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Chen, Xi, Lobo, Fernanda Leite, Bian, Yanhong, Lu, Lu, Chen, Xiaowen, Tucker, Melvin P., Wang, Yuxi, and Ren, Zhiyong Jason. Electrical decoupling of microbial electrochemical reactions enables spontaneous H 2 evolution. United Kingdom: N. p., 2020. Web. doi:10.1039/C9EE02571E.
Chen, Xi, Lobo, Fernanda Leite, Bian, Yanhong, Lu, Lu, Chen, Xiaowen, Tucker, Melvin P., Wang, Yuxi, & Ren, Zhiyong Jason. Electrical decoupling of microbial electrochemical reactions enables spontaneous H 2 evolution. United Kingdom. doi:10.1039/C9EE02571E.
Chen, Xi, Lobo, Fernanda Leite, Bian, Yanhong, Lu, Lu, Chen, Xiaowen, Tucker, Melvin P., Wang, Yuxi, and Ren, Zhiyong Jason. Wed . "Electrical decoupling of microbial electrochemical reactions enables spontaneous H 2 evolution". United Kingdom. doi:10.1039/C9EE02571E.
@article{osti_1576020,
title = {Electrical decoupling of microbial electrochemical reactions enables spontaneous H 2 evolution},
author = {Chen, Xi and Lobo, Fernanda Leite and Bian, Yanhong and Lu, Lu and Chen, Xiaowen and Tucker, Melvin P. and Wang, Yuxi and Ren, Zhiyong Jason},
abstractNote = {The uphill reaction of H 2 evolution was made possible by harvesting wastewater energy using electrical circuiting.},
doi = {10.1039/C9EE02571E},
journal = {Energy & Environmental Science},
number = ,
volume = ,
place = {United Kingdom},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 5, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation
journal, March 2018


Uphill production of dihydrogen by enzymatic oxidation of glucose without an external energy source
journal, August 2018


Renewable hydrogen generation from a dual-circuit redox flow battery
journal, January 2014

  • Amstutz, Véronique; Toghill, Kathryn E.; Powlesland, Francis
  • Energy Environ. Sci., Vol. 7, Issue 7
  • DOI: 10.1039/C4EE00098F

Sustainable Hydrogen Production
journal, August 2004


Recent progress in alkaline water electrolysis for hydrogen production and applications
journal, June 2010


Microbial electrolysis cells for waste biorefinery: A state of the art review
journal, September 2016


Light work with water
journal, December 2001


Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting
journal, September 2014


Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen
journal, March 1995

  • Bard, Allen J.; Fox, Marye Anne
  • Accounts of Chemical Research, Vol. 28, Issue 3
  • DOI: 10.1021/ar00051a007

High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling
journal, April 2015

  • Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 16
  • DOI: 10.1073/pnas.1417719112

Microbial Photoelectrosynthesis for Self-Sustaining Hydrogen Generation
journal, November 2017

  • Lu, Lu; Williams, Nicholas B.; Turner, John A.
  • Environmental Science & Technology, Vol. 51, Issue 22
  • DOI: 10.1021/acs.est.7b03644

Energy harvesting influences electrochemical performance of microbial fuel cells
journal, July 2017


Microbial fuel cell energy harvesting using synchronous flyback converter
journal, February 2014


Photoelectrochemical water splitting in separate oxygen and hydrogen cells
journal, March 2017

  • Landman, Avigail; Dotan, Hen; Shter, Gennady E.
  • Nature Materials, Vol. 16, Issue 6
  • DOI: 10.1038/nmat4876

Electrochemical corrosion of carbon steel exposed to biodiesel/simulated seawater mixture
journal, April 2012


Surface Strategies for Particulate Photocatalysts toward Artificial Photosynthesis
journal, November 2018


Solar–wind hybrid renewable energy system: A review
journal, May 2016


Unbiased solar H 2 production with current density up to 23 mA cm −2 by Swiss-cheese black Si coupled with wastewater bioanode
journal, January 2019

  • Lu, Lu; Vakki, Waltteri; Aguiar, Jeffery A.
  • Energy & Environmental Science, Vol. 12, Issue 3
  • DOI: 10.1039/C8EE03673J

Practical Energy Harvesting for Microbial Fuel Cells: A Review
journal, February 2015

  • Wang, Heming; Park, Jae-Do; Ren, Zhiyong Jason
  • Environmental Science & Technology, Vol. 49, Issue 6
  • DOI: 10.1021/es5047765

Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells
journal, January 2006

  • Cheng, Shaoan; Liu, Hong; Logan, Bruce E.
  • Environmental Science & Technology, Vol. 40, Issue 1
  • DOI: 10.1021/es0512071

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Nickel-Based Membrane Electrodes Enable High-Rate Electrochemical Ammonia Recovery
journal, June 2018

  • Hou, Dianxun; Iddya, Arpita; Chen, Xi
  • Environmental Science & Technology, Vol. 52, Issue 15
  • DOI: 10.1021/acs.est.8b01349

Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer
journal, April 2013


Electrochemically Assisted Microbial Production of Hydrogen from Acetate
journal, June 2005

  • Liu, Hong; Grot, Stephen; Logan, Bruce E.
  • Environmental Science & Technology, Vol. 39, Issue 11
  • DOI: 10.1021/es050244p

Decoupling Strategies in Electrochemical Water Splitting and Beyond
journal, August 2018


Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Electrolysis of water on (oxidized) metal surfaces
journal, December 2005


Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter
journal, December 2008

  • Logan, Bruce E.; Call, Douglas; Cheng, Shaoan
  • Environmental Science & Technology, Vol. 42, Issue 23
  • DOI: 10.1021/es801553z

Microbial electrochemical treatment of biorefinery black liquor and resource recovery
journal, January 2019

  • Chen, Xi; Katahira, Rui; Ge, Zheng
  • Green Chemistry, Vol. 21, Issue 6
  • DOI: 10.1039/C8GC02909A

Artificial photosynthesis: opportunities and challenges of molecular catalysts
journal, January 2019

  • Zhang, Biaobiao; Sun, Licheng
  • Chemical Society Reviews, Vol. 48, Issue 7
  • DOI: 10.1039/C8CS00897C

Optimization of membrane stack configuration in enlarged microbial desalination cells for efficient water desalination
journal, August 2016