skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structurally Deformed MoS 2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction

Authors:
 [1];  [2];  [3];  [2];  [4];  [5];  [3];  [6];  [5];  [4];  [2];  [3]; ORCiD logo [7]
  1. School of Engineering, University of California, Merced CA 95343 USA, Molecular Foundry, Lawrence Berkeley National Lab, Berkeley CA 94720 USA
  2. Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 Saudi Arabia
  3. Department of Electronic, Optical and Nanomaterials, Sandia National Lab, Albuquerque NM 87106 USA
  4. Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley, National Lab, Berkeley CA 94720 USA
  5. School of Engineering and Applied Science, Yale University, New Haven CT 06520 USA
  6. Molecular Foundry, Lawrence Berkeley National Lab, Berkeley CA 94720 USA
  7. School of Engineering, University of California, Merced CA 95343 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1399178
Grant/Contract Number:  
AC02-05CH11231; SC0004993; NA-0003525
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 29 Journal Issue: 44; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Chen, Yen-Chang, Lu, Ang-Yu, Lu, Ping, Yang, Xiulin, Jiang, Chang-Ming, Mariano, Marina, Kaehr, Bryan, Lin, Oliver, Taylor, André, Sharp, Ian D., Li, Lain-Jong, Chou, Stanley S., and Tung, Vincent. Structurally Deformed MoS 2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Germany: N. p., 2017. Web. doi:10.1002/adma.201703863.
Chen, Yen-Chang, Lu, Ang-Yu, Lu, Ping, Yang, Xiulin, Jiang, Chang-Ming, Mariano, Marina, Kaehr, Bryan, Lin, Oliver, Taylor, André, Sharp, Ian D., Li, Lain-Jong, Chou, Stanley S., & Tung, Vincent. Structurally Deformed MoS 2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Germany. doi:10.1002/adma.201703863.
Chen, Yen-Chang, Lu, Ang-Yu, Lu, Ping, Yang, Xiulin, Jiang, Chang-Ming, Mariano, Marina, Kaehr, Bryan, Lin, Oliver, Taylor, André, Sharp, Ian D., Li, Lain-Jong, Chou, Stanley S., and Tung, Vincent. Thu . "Structurally Deformed MoS 2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction". Germany. doi:10.1002/adma.201703863.
@article{osti_1399178,
title = {Structurally Deformed MoS 2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction},
author = {Chen, Yen-Chang and Lu, Ang-Yu and Lu, Ping and Yang, Xiulin and Jiang, Chang-Ming and Mariano, Marina and Kaehr, Bryan and Lin, Oliver and Taylor, André and Sharp, Ian D. and Li, Lain-Jong and Chou, Stanley S. and Tung, Vincent},
abstractNote = {},
doi = {10.1002/adma.201703863},
journal = {Advanced Materials},
number = 44,
volume = 29,
place = {Germany},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/adma.201703863

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ultrahigh Hydrogen Evolution Performance of Under-Water “Superaerophobic” MoS 2 Nanostructured Electrodes
journal, February 2014


Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS 2 Nanosheets
journal, May 2013

  • Lukowski, Mark A.; Daniel, Andrew S.; Meng, Fei
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja404523s

Structure change, layer sliding, and metallization in high-pressure MoS 2
journal, April 2013


Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies
journal, November 2015

  • Li, Hong; Tsai, Charlie; Koh, Ai Leen
  • Nature Materials, Vol. 15, Issue 1
  • DOI: 10.1038/nmat4465

Lithium intercalation via -Butyllithium of the layered transition metal dichalcogenides
journal, April 1975


Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma
journal, December 2016


Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

Formation of ripples in atomically thin MoS 2 and local strain engineering of electrostatic properties
journal, February 2015


MoS2 Nanoparticles Grown on Graphene An Advanced Catalyst for the Hydrogen Evolution Reaction
journal, May 2011

  • Li, Yanguang; Wang, Hailiang; Xie, Liming
  • Journal of the American Chemical Society, Vol. 133, Issue 19, p. 7296-7299
  • DOI: 10.1021/ja201269b

Highly Efficient Electrocatalytic Hydrogen Production by MoS x Grown on Graphene-Protected 3D Ni Foams
journal, October 2012

  • Chang, Yung-Huang; Lin, Cheng-Te; Chen, Tzu-Yin
  • Advanced Materials, Vol. 25, Issue 5
  • DOI: 10.1002/adma.201202920

Structural destabilization induced by lithium intercalation in MoS 2 and related compounds
journal, January 1983

  • Py, M. A.; Haering, R. R.
  • Canadian Journal of Physics, Vol. 61, Issue 1
  • DOI: 10.1139/p83-013

Electrohydrodynamic-assisted Assembly of Hierarchically Structured, 3D Crumpled Nanostructures for Efficient Solar Conversions
journal, December 2016

  • Ishihara, Hidetaka; Chen, Yen-Chang; De Marco, Nicholas
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep38701

Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides
journal, October 2015


Bulk Nanostructured Materials Based on Two-Dimensional Building Blocks: A Roadmap
journal, September 2015


Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide
journal, June 2015

  • Li, Hong; Contryman, Alex W.; Qian, Xiaofeng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8381

Predictions of Enhanced Chemical Reactivity at Regions of Local Conformational Strain on Carbon Nanotubes:  Kinky Chemistry
journal, May 1999

  • Srivastava, Deepak; Brenner, Donald W.; Schall, J. David
  • The Journal of Physical Chemistry B, Vol. 103, Issue 21
  • DOI: 10.1021/jp990882s

Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide
journal, October 2015

  • Chou, Stanley S.; Sai, Na; Lu, Ping
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9311

Defect-Rich MoS 2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution
journal, August 2013


Exfoliated and Restacked MoS 2 and WS 2 :  Ionic or Neutral Species? Encapsulation and Ordering of Hard Electropositive Cations
journal, December 1999

  • Heising, Joy; Kanatzidis, Mercouri G.
  • Journal of the American Chemical Society, Vol. 121, Issue 50
  • DOI: 10.1021/ja991644d

Synergistic Phase and Disorder Engineering in 1T-MoSe 2 Nanosheets for Enhanced Hydrogen-Evolution Reaction
journal, May 2017


Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials
journal, October 2014

  • Benck, Jesse D.; Hellstern, Thomas R.; Kibsgaard, Jakob
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs500923c

Local Strain Engineering in Atomically Thin MoS 2
journal, October 2013

  • Castellanos-Gomez, Andres; Roldán, Rafael; Cappelluti, Emmanuele
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402875m

Conducting MoS 2 Nanosheets as Catalysts for Hydrogen Evolution Reaction
journal, November 2013

  • Voiry, Damien; Salehi, Maryam; Silva, Rafael
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403661s

Bending Two-Dimensional Materials To Control Charge Localization and Fermi-Level Shift
journal, March 2016


Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H
journal, August 2002


Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers
journal, February 2013

  • Kong, Desheng; Wang, Haotian; Cha, Judy J.
  • Nano Letters, Vol. 13, Issue 3, p. 1341-1347
  • DOI: 10.1021/nl400258t

Defects Engineered Monolayer MoS 2 for Improved Hydrogen Evolution Reaction
journal, January 2016


The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen
journal, June 2016

  • Voiry, Damien; Fullon, Raymond; Yang, Jieun
  • Nature Materials, Vol. 15, Issue 9
  • DOI: 10.1038/nmat4660

Biomimetic Hydrogen Evolution:  MoS 2 Nanoparticles as Catalyst for Hydrogen Evolution
journal, April 2005

  • Hinnemann, Berit; Moses, Poul Georg; Bonde, Jacob
  • Journal of the American Chemical Society, Vol. 127, Issue 15
  • DOI: 10.1021/ja0504690

Hydrogen Evolution on Supported Incomplete Cubane-type [Mo3S4]4+ Electrocatalysts
journal, November 2008

  • Jaramillo, Thomas F.; Bonde, Jacob; Zhang, Jingdong
  • The Journal of Physical Chemistry C, Vol. 112, Issue 45, p. 17492-17498
  • DOI: 10.1021/jp802695e

Kinetic Study of Hydrogen Evolution Reaction over Strained MoS 2 with Sulfur Vacancies Using Scanning Electrochemical Microscopy
journal, April 2016

  • Li, Hong; Du, Minshu; Mleczko, Michal J.
  • Journal of the American Chemical Society, Vol. 138, Issue 15
  • DOI: 10.1021/jacs.6b01377

Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets
journal, June 2016

  • Yin, Ying; Han, Jiecai; Zhang, Yumin
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b03714

Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
journal, October 2012

  • Kibsgaard, Jakob; Chen, Zhebo; Reinecke, Benjamin N.
  • Nature Materials, Vol. 11, Issue 11, p. 963-969
  • DOI: 10.1038/nmat3439

Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters
journal, January 2014

  • Kibsgaard, Jakob; Jaramillo, Thomas F.; Besenbacher, Flemming
  • Nature Chemistry, Vol. 6, Issue 3
  • DOI: 10.1038/nchem.1853

Core–shell MoO3–MoS2 Nanowires for Hydrogen Evolution A Functional Design for Electrocatalytic Materials
journal, October 2011

  • Chen, Zhebo; Cummins, Dustin; Reinecke, Benjamin N.
  • Nano Letters, Vol. 11, Issue 10, p. 4168-4175
  • DOI: 10.1021/nl2020476

Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2
journal, April 2014

  • Lin, Yung-Chang; Dumcenco, Dumitru O.; Huang, Ying-Sheng
  • Nature Nanotechnology, Vol. 9, Issue 5
  • DOI: 10.1038/nnano.2014.64

Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution
journal, July 2013

  • Voiry, Damien; Yamaguchi, Hisato; Li, Junwen
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3700

All The Catalytic Active Sites of MoS 2 for Hydrogen Evolution
journal, December 2016

  • Li, Guoqing; Zhang, Du; Qiao, Qiao
  • Journal of the American Chemical Society, Vol. 138, Issue 51
  • DOI: 10.1021/jacs.6b05940

Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2
journal, July 2012

  • Eda, Goki; Fujita, Takeshi; Yamaguchi, Hisato
  • ACS Nano, Vol. 6, Issue 8, p. 7311-7317
  • DOI: 10.1021/nn302422x

Electrochemical Tuning of MoS 2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution
journal, April 2014

  • Wang, Haotian; Lu, Zhiyi; Kong, Desheng
  • ACS Nano, Vol. 8, Issue 5
  • DOI: 10.1021/nn500959v

Controlling the Metal to Semiconductor Transition of MoS 2 and WS 2 in Solution
journal, January 2015

  • Chou, Stanley S.; Huang, Yi-Kai; Kim, Jaemyung
  • Journal of the American Chemical Society, Vol. 137, Issue 5
  • DOI: 10.1021/ja5107145

Molybdenum Sulfide Supported on Crumpled Graphene Balls for Electrocatalytic Hydrogen Production
journal, May 2014

  • Smith, Alexander J.; Chang, Yung-Huang; Raidongia, Kalyan
  • Advanced Energy Materials, Vol. 4, Issue 14
  • DOI: 10.1002/aenm.201400398

Highly active hydrogen evolution catalysis from metallic WS 2 nanosheets
journal, January 2014

  • Lukowski, Mark A.; Daniel, Andrew S.; English, Caroline R.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE01329H

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
journal, April 2013

  • Chhowalla, Manish; Shin, Hyeon Suk; Eda, Goki
  • Nature Chemistry, Vol. 5, Issue 4, p. 263-275
  • DOI: 10.1038/nchem.1589

High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution
journal, August 2016


Stabilizing Active Edge Sites in Semicrystalline Molybdenum Sulfide by Anchorage on Nitrogen-Doped Carbon Nanotubes for Hydrogen Evolution Reaction
journal, July 2016

  • Ekspong, Joakim; Sharifi, Tiva; Shchukarev, Andrey
  • Advanced Functional Materials, Vol. 26, Issue 37
  • DOI: 10.1002/adfm.201601994

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide
journal, May 2014

  • Nayak, Avinash P.; Bhattacharyya, Swastibrata; Zhu, Jie
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4731

Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production
journal, July 2015

  • Gao, Min-Rui; Chan, Maria K. Y.; Sun, Yugang
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8493

Nature inspiring processing route toward high throughput production of perovskite photovoltaics
journal, January 2016

  • Ishihara, Hidetaka; Sarang, Som; Chen, Yen-Chang
  • J. Mater. Chem. A, Vol. 4, Issue 18
  • DOI: 10.1039/C5TA09992G