skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility

Abstract

A series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.5 ns) to irradiate low gas-filled (0.3 mg / cc of helium) bare depleted uranium hohlraums, resulting in a peak hohlraum radiative temperature ~ 290 eV. The imploding shell, composed of the nonablated high density carbon and the DT cryogenic layer, is, thus, driven to velocity on the order of 380 km / s resulting in a peak kinetic energy of ~ 21 kJ, which once stagnated produced a total DT neutron yield of 1.9 × 1016 (shot N170827) corresponding to an output fusion energy of 54 kJ. Time dependent low mode asymmetries that limited further progress of implosions have now been controlled, leading to an increased compression of the hot spot. Finally, it resulted in hot spot areal density (ρr ~ 0.3 g / cm2) and stagnation pressure (~ 360 Gbar) never before achieved in a laboratory experiment.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [3];  [1];  [4];  [1];  [1];  [1];  [2];  [1];  [1] more »;  [2];  [1];  [5];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [1];  [5];  [1];  [1];  [6];  [1];  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. General Atomics, San Diego, CA (United States)
  3. Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  6. Diamond Materials Gmbh, Freiburg (Germany)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1570425
Alternate Identifier(s):
OSTI ID: 1454312
Report Number(s):
LLNL-JRNL-752037
Journal ID: ISSN 0031-9007; PRLTAO; 892280
Grant/Contract Number:  
AC52-07NA27344; 11-ERD-050; NA0001808
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 24; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Le Pape, S., Berzak Hopkins, L. F., Divol, L., Pak, A., Dewald, E. L., Bhandarkar, S., Bennedetti, L. R., Bunn, T., Biener, J., Crippen, J., Casey, D., Edgell, D., Fittinghoff, D. N., Gatu-Johnson, M., Goyon, C., Haan, S., Hatarik, R., Havre, M., Ho, D. D-M., Izumi, N., Jaquez, J., Khan, S. F., Kyrala, G. A., Ma, T., Mackinnon, A. J., MacPhee, A. G., MacGowan, B. J., Meezan, N. B., Milovich, J., Millot, M., Michel, P., Nagel, S. R., Nikroo, A., Patel, P., Ralph, J., Ross, J. S., Rice, N. G., Strozzi, D., Stadermann, M., Volegov, P., Yeamans, C., Weber, C., Wild, C., Callahan, D., and Hurricane, O. A. Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.120.245003.
Le Pape, S., Berzak Hopkins, L. F., Divol, L., Pak, A., Dewald, E. L., Bhandarkar, S., Bennedetti, L. R., Bunn, T., Biener, J., Crippen, J., Casey, D., Edgell, D., Fittinghoff, D. N., Gatu-Johnson, M., Goyon, C., Haan, S., Hatarik, R., Havre, M., Ho, D. D-M., Izumi, N., Jaquez, J., Khan, S. F., Kyrala, G. A., Ma, T., Mackinnon, A. J., MacPhee, A. G., MacGowan, B. J., Meezan, N. B., Milovich, J., Millot, M., Michel, P., Nagel, S. R., Nikroo, A., Patel, P., Ralph, J., Ross, J. S., Rice, N. G., Strozzi, D., Stadermann, M., Volegov, P., Yeamans, C., Weber, C., Wild, C., Callahan, D., & Hurricane, O. A. Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility. United States. doi:10.1103/PhysRevLett.120.245003.
Le Pape, S., Berzak Hopkins, L. F., Divol, L., Pak, A., Dewald, E. L., Bhandarkar, S., Bennedetti, L. R., Bunn, T., Biener, J., Crippen, J., Casey, D., Edgell, D., Fittinghoff, D. N., Gatu-Johnson, M., Goyon, C., Haan, S., Hatarik, R., Havre, M., Ho, D. D-M., Izumi, N., Jaquez, J., Khan, S. F., Kyrala, G. A., Ma, T., Mackinnon, A. J., MacPhee, A. G., MacGowan, B. J., Meezan, N. B., Milovich, J., Millot, M., Michel, P., Nagel, S. R., Nikroo, A., Patel, P., Ralph, J., Ross, J. S., Rice, N. G., Strozzi, D., Stadermann, M., Volegov, P., Yeamans, C., Weber, C., Wild, C., Callahan, D., and Hurricane, O. A. Thu . "Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility". United States. doi:10.1103/PhysRevLett.120.245003. https://www.osti.gov/servlets/purl/1570425.
@article{osti_1570425,
title = {Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility},
author = {Le Pape, S. and Berzak Hopkins, L. F. and Divol, L. and Pak, A. and Dewald, E. L. and Bhandarkar, S. and Bennedetti, L. R. and Bunn, T. and Biener, J. and Crippen, J. and Casey, D. and Edgell, D. and Fittinghoff, D. N. and Gatu-Johnson, M. and Goyon, C. and Haan, S. and Hatarik, R. and Havre, M. and Ho, D. D-M. and Izumi, N. and Jaquez, J. and Khan, S. F. and Kyrala, G. A. and Ma, T. and Mackinnon, A. J. and MacPhee, A. G. and MacGowan, B. J. and Meezan, N. B. and Milovich, J. and Millot, M. and Michel, P. and Nagel, S. R. and Nikroo, A. and Patel, P. and Ralph, J. and Ross, J. S. and Rice, N. G. and Strozzi, D. and Stadermann, M. and Volegov, P. and Yeamans, C. and Weber, C. and Wild, C. and Callahan, D. and Hurricane, O. A.},
abstractNote = {A series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.5 ns) to irradiate low gas-filled (0.3 mg / cc of helium) bare depleted uranium hohlraums, resulting in a peak hohlraum radiative temperature ~ 290 eV. The imploding shell, composed of the nonablated high density carbon and the DT cryogenic layer, is, thus, driven to velocity on the order of 380 km / s resulting in a peak kinetic energy of ~ 21 kJ, which once stagnated produced a total DT neutron yield of 1.9 × 1016 (shot N170827) corresponding to an output fusion energy of 54 kJ. Time dependent low mode asymmetries that limited further progress of implosions have now been controlled, leading to an increased compression of the hot spot. Finally, it resulted in hot spot areal density (ρr ~ 0.3 g / cm2) and stagnation pressure (~ 360 Gbar) never before achieved in a laboratory experiment.},
doi = {10.1103/PhysRevLett.120.245003},
journal = {Physical Review Letters},
number = 24,
volume = 120,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Target and laser specifications for shots N170601 and N170827.a) 6.20 mm scale hohlraum b) 70 $μ$m thick HDC capsule used in the 6.20mm scale hohlraum, green layer denotes the doped layer. This figure illustrates the doped layer of the HDC capsule. The doped HDC layer is 20 micronsmore » thick doped with 0:3% atomic percent of tungsten to shield the fuel from suprathermal X-rays. This shielding is designed to reduce decompression of the inner capsule region and fuel and to improve the stability of the fuel-capsule interface. c) laser pulse.« less

Save / Share:

Works referenced in this record:

Laser-driven fusion
journal, April 1974


Symmetry tuning for ignition capsules via the symcap technique
journal, May 2011

  • Kyrala, G. A.; Kline, J. L.; Dixit, S.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3574504

National Ignition Facility neutron time-of-flight measurements (invited)
journal, October 2010

  • Lerche, R. A.; Glebov, V. Yu.; Moran, M. J.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3478680

Escape of α Particles from a Laser-Pulse-Initiated Thermonuclear Reaction
journal, April 1973


Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments
journal, September 2014

  • Moody, J. D.; Robey, H. F.; Celliers, P. M.
  • Physics of Plasmas, Vol. 21, Issue 9
  • DOI: 10.1063/1.4893136

Review of the National Ignition Campaign 2009-2012
journal, February 2014

  • Lindl, John; Landen, Otto; Edwards, John
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865400

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

On the importance of minimizing “coast-time” in x-ray driven inertially confined fusion implosions
journal, September 2017

  • Hurricane, O. A.; Kritcher, A.; Callahan, D. A.
  • Physics of Plasmas, Vol. 24, Issue 9
  • DOI: 10.1063/1.4994856

High-density carbon ablator experiments on the National Ignition Facility
journal, May 2014

  • MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876611

Diagnosing inertial confinement fusion gamma ray physics (invited)
journal, October 2010

  • Herrmann, H. W.; Hoffman, N.; Wilson, D. C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3495770

Cryogenic thermonuclear fuel implosions on the National Ignition Facility
journal, May 2012

  • Glenzer, S. H.; Callahan, D. A.; MacKinnon, A. J.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4719686

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Higher velocity, high-foot implosions on the National Ignition Facility lasera)
journal, May 2015

  • Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921144

The formation of the heaviest elements
journal, January 2018

  • Frebel, Anna; Beers, Timothy C.
  • Physics Today, Vol. 71, Issue 1
  • DOI: 10.1063/PT.3.3815

Implosion configurations for robust ignition using high- density carbon (diamond) ablator for indirect-drive ICF at the National Ignition Facility
journal, May 2016


Neutron source reconstruction from pinhole imaging at National Ignition Facility
journal, February 2014

  • Volegov, P.; Danly, C. R.; Fittinghoff, D. N.
  • Review of Scientific Instruments, Vol. 85, Issue 2
  • DOI: 10.1063/1.4865456

Diamond spheres for inertial confinement fusion
journal, September 2009


Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Kritcher, A. L.; Town, R.; Bradley, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4871718

2D X-Ray Radiography of Imploding Capsules at the National Ignition Facility
journal, May 2014


Integrated modeling of cryogenic layered highfoot experiments at the NIF
journal, May 2016

  • Kritcher, A. L.; Hinkel, D. E.; Callahan, D. A.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4949351

Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility
journal, July 2015


Nuclear science research with dynamic high energy density plasmas at NIF
journal, May 2016


The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility
journal, August 2016


Studying nuclear astrophysics at NIF
journal, August 2009

  • Boyd, Richard N.; Bernstein, Lee; Brune, Carl
  • Physics Today, Vol. 62, Issue 8
  • DOI: 10.1063/1.3206102

Inertially confined fusion plasmas dominated by alpha-particle self-heating
journal, April 2016

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature Physics, Vol. 12, Issue 8
  • DOI: 10.1038/nphys3720

Scaling laws for ignition at the National Ignition Facility from first principles
journal, October 2013


Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
journal, February 2014


The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF
journal, April 2013

  • Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.
  • Review of Scientific Instruments, Vol. 84, Issue 4
  • DOI: 10.1063/1.4796042

Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity
journal, May 2017

  • Divol, L.; Pak, A.; Berzak Hopkins, L. F.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982215

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.