DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility

Abstract

A series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.5 ns) to irradiate low gas-filled (0.3 mg / cc of helium) bare depleted uranium hohlraums, resulting in a peak hohlraum radiative temperature ~ 290 eV. The imploding shell, composed of the nonablated high density carbon and the DT cryogenic layer, is, thus, driven to velocity on the order of 380 km / s resulting in a peak kinetic energy of ~ 21 kJ, which once stagnated produced a total DT neutron yield of 1.9 × 1016 (shot N170827) corresponding to an output fusion energy of 54 kJ. Time dependent low mode asymmetries that limited further progress of implosions have now been controlled, leading to an increased compression of the hot spot. Finally, it resulted in hot spot areal density (ρr ~ 0.3 g / cm2) and stagnation pressure (~ 360 Gbar) never before achieved in a laboratory experiment.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [3];  [1];  [4];  [1];  [1];  [1];  [2];  [1];  [1] more »;  [2];  [1];  [5];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [1];  [5];  [1];  [1];  [6];  [1];  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. General Atomics, San Diego, CA (United States)
  3. Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  6. Diamond Materials Gmbh, Freiburg (Germany)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1570425
Alternate Identifier(s):
OSTI ID: 1454312
Report Number(s):
LLNL-JRNL-752037
Journal ID: ISSN 0031-9007; PRLTAO; 892280; TRN: US2100199
Grant/Contract Number:  
AC52-07NA27344; 11-ERD-050; NA0001808
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 24; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Le Pape, S., Berzak Hopkins, L. F., Divol, L., Pak, A., Dewald, E. L., Bhandarkar, S., Bennedetti, L. R., Bunn, T., Biener, J., Crippen, J., Casey, D., Edgell, D., Fittinghoff, D. N., Gatu-Johnson, M., Goyon, C., Haan, S., Hatarik, R., Havre, M., Ho, D. D-M., Izumi, N., Jaquez, J., Khan, S. F., Kyrala, G. A., Ma, T., Mackinnon, A. J., MacPhee, A. G., MacGowan, B. J., Meezan, N. B., Milovich, J., Millot, M., Michel, P., Nagel, S. R., Nikroo, A., Patel, P., Ralph, J., Ross, J. S., Rice, N. G., Strozzi, D., Stadermann, M., Volegov, P., Yeamans, C., Weber, C., Wild, C., Callahan, D., and Hurricane, O. A. Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.120.245003.
Le Pape, S., Berzak Hopkins, L. F., Divol, L., Pak, A., Dewald, E. L., Bhandarkar, S., Bennedetti, L. R., Bunn, T., Biener, J., Crippen, J., Casey, D., Edgell, D., Fittinghoff, D. N., Gatu-Johnson, M., Goyon, C., Haan, S., Hatarik, R., Havre, M., Ho, D. D-M., Izumi, N., Jaquez, J., Khan, S. F., Kyrala, G. A., Ma, T., Mackinnon, A. J., MacPhee, A. G., MacGowan, B. J., Meezan, N. B., Milovich, J., Millot, M., Michel, P., Nagel, S. R., Nikroo, A., Patel, P., Ralph, J., Ross, J. S., Rice, N. G., Strozzi, D., Stadermann, M., Volegov, P., Yeamans, C., Weber, C., Wild, C., Callahan, D., & Hurricane, O. A. Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility. United States. https://doi.org/10.1103/PhysRevLett.120.245003
Le Pape, S., Berzak Hopkins, L. F., Divol, L., Pak, A., Dewald, E. L., Bhandarkar, S., Bennedetti, L. R., Bunn, T., Biener, J., Crippen, J., Casey, D., Edgell, D., Fittinghoff, D. N., Gatu-Johnson, M., Goyon, C., Haan, S., Hatarik, R., Havre, M., Ho, D. D-M., Izumi, N., Jaquez, J., Khan, S. F., Kyrala, G. A., Ma, T., Mackinnon, A. J., MacPhee, A. G., MacGowan, B. J., Meezan, N. B., Milovich, J., Millot, M., Michel, P., Nagel, S. R., Nikroo, A., Patel, P., Ralph, J., Ross, J. S., Rice, N. G., Strozzi, D., Stadermann, M., Volegov, P., Yeamans, C., Weber, C., Wild, C., Callahan, D., and Hurricane, O. A. Thu . "Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility". United States. https://doi.org/10.1103/PhysRevLett.120.245003. https://www.osti.gov/servlets/purl/1570425.
@article{osti_1570425,
title = {Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility},
author = {Le Pape, S. and Berzak Hopkins, L. F. and Divol, L. and Pak, A. and Dewald, E. L. and Bhandarkar, S. and Bennedetti, L. R. and Bunn, T. and Biener, J. and Crippen, J. and Casey, D. and Edgell, D. and Fittinghoff, D. N. and Gatu-Johnson, M. and Goyon, C. and Haan, S. and Hatarik, R. and Havre, M. and Ho, D. D-M. and Izumi, N. and Jaquez, J. and Khan, S. F. and Kyrala, G. A. and Ma, T. and Mackinnon, A. J. and MacPhee, A. G. and MacGowan, B. J. and Meezan, N. B. and Milovich, J. and Millot, M. and Michel, P. and Nagel, S. R. and Nikroo, A. and Patel, P. and Ralph, J. and Ross, J. S. and Rice, N. G. and Strozzi, D. and Stadermann, M. and Volegov, P. and Yeamans, C. and Weber, C. and Wild, C. and Callahan, D. and Hurricane, O. A.},
abstractNote = {A series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.5 ns) to irradiate low gas-filled (0.3 mg / cc of helium) bare depleted uranium hohlraums, resulting in a peak hohlraum radiative temperature ~ 290 eV. The imploding shell, composed of the nonablated high density carbon and the DT cryogenic layer, is, thus, driven to velocity on the order of 380 km / s resulting in a peak kinetic energy of ~ 21 kJ, which once stagnated produced a total DT neutron yield of 1.9 × 1016 (shot N170827) corresponding to an output fusion energy of 54 kJ. Time dependent low mode asymmetries that limited further progress of implosions have now been controlled, leading to an increased compression of the hot spot. Finally, it resulted in hot spot areal density (ρr ~ 0.3 g / cm2) and stagnation pressure (~ 360 Gbar) never before achieved in a laboratory experiment.},
doi = {10.1103/PhysRevLett.120.245003},
journal = {Physical Review Letters},
number = 24,
volume = 120,
place = {United States},
year = {Thu Jun 14 00:00:00 EDT 2018},
month = {Thu Jun 14 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 161 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Target and laser specifications for shots N170601 and N170827.a) 6.20 mm scale hohlraum b) 70 $µ$m thick HDC capsule used in the 6.20mm scale hohlraum, green layer denotes the doped layer. This figure illustrates the doped layer of the HDC capsule. The doped HDC layer is 20 micronsmore » thick doped with 0.3% atomic percent of tungsten to shield the fuel from suprathermal X-rays. This shielding is designed to reduce decompression of the inner capsule region and fuel and to improve the stability of the fuel-capsule interface. c) laser pulse.« less

Save / Share:

Works referenced in this record:

Laser-driven fusion
journal, April 1974


National Ignition Facility neutron time-of-flight measurements (invited)
journal, October 2010

  • Lerche, R. A.; Glebov, V. Yu.; Moran, M. J.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3478680

Escape of α Particles from a Laser-Pulse-Initiated Thermonuclear Reaction
journal, April 1973


Review of the National Ignition Campaign 2009-2012
journal, February 2014

  • Lindl, John; Landen, Otto; Edwards, John
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865400

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

On the importance of minimizing “coast-time” in x-ray driven inertially confined fusion implosions
journal, September 2017

  • Hurricane, O. A.; Kritcher, A.; Callahan, D. A.
  • Physics of Plasmas, Vol. 24, Issue 9
  • DOI: 10.1063/1.4994856

High-density carbon ablator experiments on the National Ignition Facility
journal, May 2014

  • MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876611

Diagnosing inertial confinement fusion gamma ray physics (invited)
journal, October 2010

  • Herrmann, H. W.; Hoffman, N.; Wilson, D. C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3495770

Implosion configurations for robust ignition using high- density carbon (diamond) ablator for indirect-drive ICF at the National Ignition Facility
journal, May 2016


Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Kritcher, A. L.; Town, R.; Bradley, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4871718

2D X-Ray Radiography of Imploding Capsules at the National Ignition Facility
journal, May 2014


Integrated modeling of cryogenic layered highfoot experiments at the NIF
journal, May 2016

  • Kritcher, A. L.; Hinkel, D. E.; Callahan, D. A.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4949351

The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility
journal, August 2016


Scaling laws for ignition at the National Ignition Facility from first principles
journal, October 2013


Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
journal, February 2014


Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity
journal, May 2017

  • Divol, L.; Pak, A.; Berzak Hopkins, L. F.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982215

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Symmetry tuning for ignition capsules via the symcap technique
journal, May 2011

  • Kyrala, G. A.; Kline, J. L.; Dixit, S.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3574504

Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments
journal, September 2014

  • Moody, J. D.; Robey, H. F.; Celliers, P. M.
  • Physics of Plasmas, Vol. 21, Issue 9
  • DOI: 10.1063/1.4893136

Cryogenic thermonuclear fuel implosions on the National Ignition Facility
journal, May 2012

  • Glenzer, S. H.; Callahan, D. A.; MacKinnon, A. J.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4719686

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Higher velocity, high-foot implosions on the National Ignition Facility lasera)
journal, May 2015

  • Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921144

The formation of the heaviest elements
journal, January 2018

  • Frebel, Anna; Beers, Timothy C.
  • Physics Today, Vol. 71, Issue 1
  • DOI: 10.1063/PT.3.3815

Neutron source reconstruction from pinhole imaging at National Ignition Facility
journal, February 2014

  • Volegov, P.; Danly, C. R.; Fittinghoff, D. N.
  • Review of Scientific Instruments, Vol. 85, Issue 2
  • DOI: 10.1063/1.4865456

Diamond spheres for inertial confinement fusion
journal, September 2009


Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility
journal, July 2015


Nuclear science research with dynamic high energy density plasmas at NIF
journal, May 2016


Studying nuclear astrophysics at NIF
journal, August 2009

  • Boyd, Richard N.; Bernstein, Lee; Brune, Carl
  • Physics Today, Vol. 62, Issue 8
  • DOI: 10.1063/1.3206102

Inertially confined fusion plasmas dominated by alpha-particle self-heating
journal, April 2016

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature Physics, Vol. 12, Issue 8
  • DOI: 10.1038/nphys3720

The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF
journal, April 2013

  • Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.
  • Review of Scientific Instruments, Vol. 84, Issue 4
  • DOI: 10.1063/1.4796042

The formation of the heaviest elements
preprint, January 2018


Works referencing / citing this record:

Role of energy storage systems in energy transition from fossil fuels to renewables
journal, February 2020

  • Kalair, Anam; Abas, Naeem; Saleem, Muhammad Shoaib
  • Energy Storage
  • DOI: 10.1002/est2.135

Observation of persistent species temperature separation in inertial confinement fusion mixtures
journal, January 2020


Enhanced energy coupling for indirectly driven inertial confinement fusion
journal, October 2018


Tripled yield in direct-drive laser fusion through statistical modelling
journal, January 2019


Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant
journal, August 2018

  • Berzak Hopkins, L.; Divol, L.; Weber, C.
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5033459

Gallium nitride (GaN) devices as a platform technology for radiation hard inertial confinement fusion diagnostics
journal, October 2018

  • Sun, K. -X.; Valles, M.; Valencia, H.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5039407

Development of new platforms for hydrodynamic instability and asymmetry measurements in deceleration phase of indirectly driven implosions on NIF
journal, August 2018

  • Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5039744

Probing the seeding of hydrodynamic instabilities from nonuniformities in ablator materials using 2D velocimetry
journal, September 2018

  • Ali, S. J.; Celliers, P. M.; Haan, S.
  • Physics of Plasmas, Vol. 25, Issue 9
  • DOI: 10.1063/1.5047943

Diagnostic signatures of performance degrading perturbations in inertial confinement fusion implosions
journal, December 2018

  • McGlinchey, K.; Appelbe, B. D.; Crilly, A. J.
  • Physics of Plasmas, Vol. 25, Issue 12
  • DOI: 10.1063/1.5064504

Impact of imposed mode 2 laser drive asymmetry on inertial confinement fusion implosions
journal, January 2019

  • Gatu Johnson, M.; Appelbe, B. D.; Chittenden, J. P.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5066435

Stimulated backscatter of laser light from BigFoot hohlraums on the National Ignition Facility
journal, January 2019

  • Berger, R. L.; Thomas, C. A.; Baker, K. L.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5079234

Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions
journal, January 2019

  • Haines, Brian M.; Olson, R. E.; Sweet, W.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5080262

A theoretical model for low-mode asymmetries in ICF implosions
journal, February 2019

  • Zhang, Cunbo; Yu, Chengxin; Yang, Chen
  • Physics of Plasmas, Vol. 26, Issue 2
  • DOI: 10.1063/1.5082586

Perturbation modifications by pre-magnetisation of inertial confinement fusion implosions
journal, February 2019

  • Walsh, C. A.; McGlinchey, K.; Tong, J. K.
  • Physics of Plasmas, Vol. 26, Issue 2
  • DOI: 10.1063/1.5085498

Approaching a burning plasma on the NIF
journal, May 2019

  • Hurricane, O. A.; Springer, P. T.; Patel, P. K.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5087256

Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities
journal, August 2019

  • Zhou, Ye; Clark, Timothy T.; Clark, Daniel S.
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5088745

Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions
journal, May 2019

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5091449

Implosion performance of subscale beryllium capsules on the NIF
journal, May 2019

  • Zylstra, A. B.; MacLaren, S.; Yi, S. A.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5098319

On alpha-particle transport in inertial fusion
journal, June 2019

  • Zylstra, A. B.; Hurricane, O. A.
  • Physics of Plasmas, Vol. 26, Issue 6
  • DOI: 10.1063/1.5101074

Making inertial confinement fusion models more predictive
journal, August 2019

  • Gaffney, Jim A.; Brandon, Scott T.; Humbird, Kelli D.
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5108667

Modification of classical electron transport due to collisions between electrons and fast ions
journal, October 2019

  • Appelbe, B.; Sherlock, M.; El-Amiri, O.
  • Physics of Plasmas, Vol. 26, Issue 10
  • DOI: 10.1063/1.5114794

Computational study of instability and fill tube mitigation strategies for double shell implosions
journal, October 2019

  • Haines, Brian M.; Daughton, W. S.; Loomis, E. N.
  • Physics of Plasmas, Vol. 26, Issue 10
  • DOI: 10.1063/1.5115031

Maintaining low-mode symmetry control with extended pulse shapes for lower-adiabat Bigfoot implosions on the National Ignition Facility
journal, November 2019

  • Hohenberger, M.; Casey, D. T.; Thomas, C. A.
  • Physics of Plasmas, Vol. 26, Issue 11
  • DOI: 10.1063/1.5121435

Mixing in ICF implosions on the National Ignition Facility caused by the fill-tube
journal, March 2020

  • Weber, C. R.; Clark, D. S.; Pak, A.
  • Physics of Plasmas, Vol. 27, Issue 3
  • DOI: 10.1063/1.5125599

Understanding ICF hohlraums using NIF gated laser-entrance-hole images
journal, February 2020

  • Chen, Hui; Woods, D. T.; Jones, O. S.
  • Physics of Plasmas, Vol. 27, Issue 2
  • DOI: 10.1063/1.5128501

Analysis of NIF scaling using physics informed machine learning
journal, January 2020

  • Hsu, Abigail; Cheng, Baolian; Bradley, Paul A.
  • Physics of Plasmas, Vol. 27, Issue 1
  • DOI: 10.1063/1.5130585

Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF)
journal, November 2018

  • Hopkins, L. Berzak; LePape, S.; Divol, L.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aad97e

Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility
journal, November 2018

  • Hurricane, O. A.; Callahan, D. A.; Springer, P. T.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aaed71

Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas
journal, January 2020


The National Direct-Drive Inertial Confinement Fusion Program
journal, December 2018


Progress of indirect drive inertial confinement fusion in the United States
journal, July 2019


Burn regimes in the hydrodynamic scaling of perturbed inertial confinement fusion hotspots
journal, June 2019


Alternatives to tokamaks: a faster-better-cheaper route to fusion energy?
journal, February 2019

  • Clery, Daniel
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2141
  • DOI: 10.1098/rsta.2017.0431

Thermonuclear fusion triggered by collapsing standing whistler waves in magnetized overdense plasmas
journal, January 2020


Burn regimes in the hydrodynamic scaling of perturbed inertial confinement fusion hotspots
text, January 2019


Peta-Pascal Pressure Driven by Fast Isochoric Heating with Multi-Picosecond Intense Laser Pulse
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.