skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on March 13, 2020

Title: Planar Hall Effect in Antiferromagnetic MnTe Thin Films

Abstract

We show that the spin-orbit coupling (SOC) in α-MnTe impacts the transport behavior by generating an anisotropic valence-band splitting, resulting in four spin-polarized pockets near Γ. A minimal k·p model is constructed to capture this splitting by group theory analysis, a tight-binding model, and ab initio calculations. The model is shown to describe the rotation symmetry of the zero-field planer Hall effect (PHE). The PHE originates from the band anisotropy given by SOC, and is quantitatively estimated to be 25%–31% for an ideal thin film with a single antiferromagnetic domain.

Authors:
 [1];  [2];  [3];  [4];  [2];  [5]
  1. Univ. of California, Los Angeles, CA (United States). Dept. of Electrical and Computer Engineering
  2. Univ. of New Hampshire, Durham, NH (United States). Dept. of Physics and Materials Science Program
  3. Chinese Academy of Sciences (CAS), Beijing (China); Univ. of California, Riverside, CA (United States). Lab. for Terascale and Terahertz Electronics (LATTE), Dept. of Electrical and Computer Engineering
  4. Univ. of California, Riverside, CA (United States). Lab. for Terascale and Terahertz Electronics (LATTE), Dept. of Electrical and Computer Engineering
  5. Univ. of California, Los Angeles, CA (United States). Dept. of Electrical and Computer Engineering, and Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES); Univ. of California, Riverside, CA (United States); Univ. of New Hampshire, Durham, NH (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1566696
Alternate Identifier(s):
OSTI ID: 1546186
Grant/Contract Number:  
SC0012670; SC0016424
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 122; Journal Issue: 10; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; phonons; thermal conductivity; thermoelectric; spin dynamics; spintronics

Citation Formats

Yin, Gen, Yu, Jie-Xiang, Liu, Yizhou, Lake, Roger K., Zang, Jiadong, and Wang, Kang L. Planar Hall Effect in Antiferromagnetic MnTe Thin Films. United States: N. p., 2019. Web. doi:10.1103/physrevlett.122.106602.
Yin, Gen, Yu, Jie-Xiang, Liu, Yizhou, Lake, Roger K., Zang, Jiadong, & Wang, Kang L. Planar Hall Effect in Antiferromagnetic MnTe Thin Films. United States. doi:10.1103/physrevlett.122.106602.
Yin, Gen, Yu, Jie-Xiang, Liu, Yizhou, Lake, Roger K., Zang, Jiadong, and Wang, Kang L. Wed . "Planar Hall Effect in Antiferromagnetic MnTe Thin Films". United States. doi:10.1103/physrevlett.122.106602.
@article{osti_1566696,
title = {Planar Hall Effect in Antiferromagnetic MnTe Thin Films},
author = {Yin, Gen and Yu, Jie-Xiang and Liu, Yizhou and Lake, Roger K. and Zang, Jiadong and Wang, Kang L.},
abstractNote = {We show that the spin-orbit coupling (SOC) in α-MnTe impacts the transport behavior by generating an anisotropic valence-band splitting, resulting in four spin-polarized pockets near Γ. A minimal k·p model is constructed to capture this splitting by group theory analysis, a tight-binding model, and ab initio calculations. The model is shown to describe the rotation symmetry of the zero-field planer Hall effect (PHE). The PHE originates from the band anisotropy given by SOC, and is quantitatively estimated to be 25%–31% for an ideal thin film with a single antiferromagnetic domain.},
doi = {10.1103/physrevlett.122.106602},
journal = {Physical Review Letters},
number = 10,
volume = 122,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on March 13, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance
journal, January 2018


Spin-wave measurements on hexagonal MnTe of NiAs -type structure by inelastic neutron scattering
journal, March 2006


Spin transport and spin torque in antiferromagnetic devices
journal, March 2018


The multiple directions of antiferromagnetic spintronics
journal, March 2018


Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]
journal, February 1997


Projector augmented-wave method
journal, December 1994


Role of band-index-dependent transport relaxation times in anomalous Hall effect
journal, January 2017


Antiferromagnetic spintronics
journal, February 2018


Ultrasonic relaxation at the Néel temperature and nuclear acoustic resonance in MnTe
journal, May 1967


Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Semiclassical framework for the calculation of transport anisotropies
journal, January 2009


An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions
journal, August 2014

  • Mostofi, Arash A.; Yates, Jonathan R.; Pizzi, Giovanni
  • Computer Physics Communications, Vol. 185, Issue 8
  • DOI: 10.1016/j.cpc.2014.05.003

The spontaneous resistivity anisotropy in Ni-based alloys
journal, May 1970

  • Campbell, I. A.; Fert, A.; Jaoul, O.
  • Journal of Physics C: Solid State Physics, Vol. 3, Issue 1S
  • DOI: 10.1088/0022-3719/3/1S/310

Energy Band Structure and Electronic Properties of NiAs Type Compounds. II. Antiferromagnetic Manganese Telluride
journal, March 1981

  • Sandratskii, L. M.; Egorov, R. F.; Berdyshev, A. A.
  • physica status solidi (b), Vol. 104, Issue 1
  • DOI: 10.1002/pssb.2221040111

Influence of the exchange screening parameter on the performance of screened hybrid functionals
journal, December 2006

  • Krukau, Aliaksandr V.; Vydrov, Oleg A.; Izmaylov, Artur F.
  • The Journal of Chemical Physics, Vol. 125, Issue 22
  • DOI: 10.1063/1.2404663

Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe
journal, June 2016

  • Kriegner, D.; Výborný, K.; Olejník, K.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11623

Spin-galvanic effect
journal, May 2002

  • Ganichev, S. D.; Ivchenko, E. L.; Bel'kov, V. V.
  • Nature, Vol. 417, Issue 6885
  • DOI: 10.1038/417153a

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Structural and Magnetic Properties of MnTe Phases from Ab Initio Calculations
journal, December 2012

  • Krause, Martin; Bechstedt, Friedhelm
  • Journal of Superconductivity and Novel Magnetism, Vol. 26, Issue 5
  • DOI: 10.1007/s10948-012-2071-6

Magnetic anisotropy in antiferromagnetic hexagonal MnTe
journal, December 2017


The antiferromagnetic structure deformations in CoO and MnTe
journal, May 1953


Probing the chiral anomaly by planar Hall effect in Dirac semimetal Cd 3 As 2 nanoplates
journal, October 2018


Spintronics of antiferromagnetic systems (Review Article)
journal, January 2014

  • Gomonay, E. V.; Loktev, V. M.
  • Low Temperature Physics, Vol. 40, Issue 1
  • DOI: 10.1063/1.4862467

Anisotropic magnetoresistance in ferromagnetic 3d alloys
journal, July 1975


Chiral Anomaly as the Origin of the Planar Hall Effect in Weyl Semimetals
journal, October 2017


Electrical switching of an antiferromagnet
journal, January 2016


Antiferromagnetic spintronics
journal, March 2016

  • Jungwirth, T.; Marti, X.; Wadley, P.
  • Nature Nanotechnology, Vol. 11, Issue 3
  • DOI: 10.1038/nnano.2016.18

Electronic structure of antiferromagnetic MnTe
journal, May 1983


Concepts of antiferromagnetic spintronics
journal, February 2017

  • Gomonay, O.; Jungwirth, T.; Sinova, J.
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 11, Issue 4
  • DOI: 10.1002/pssr.201700022

Giant planar Hall effect in topological metals
journal, July 2017


Low-temperature neutron diffraction study of MnTe
journal, January 2005

  • Efrem D'Sa, J. B. C.; Bhobe, P. A.; Priolkar, K. R.
  • Journal of Magnetism and Magnetic Materials, Vol. 285, Issue 1-2
  • DOI: 10.1016/j.jmmm.2004.08.001

Imaging Current-Induced Switching of Antiferromagnetic Domains in CuMnAs
journal, January 2017


Maximally localized Wannier functions for entangled energy bands
journal, December 2001


Perspectives of antiferromagnetic spintronics
journal, April 2018