DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm2

Abstract

High-temperature superconductors (HTS) could enable high-field magnets stronger than is possible with Nb-Ti and Nb3Sn, but two challenges have so far been the low engineering critical current density JE, especially in high-current cables, and the danger of quenches. Most HTS magnets made so far have been made out of REBCO coated conductor. Here we demonstrate stable, reliable and training-quench-free performance of Bi-2212 racetrack coils wound with a Rutherford cable fabricated from wires made with a new precursor powder. These round multifilamentary wires exhibited a record JE up to 950 A/mm2 at 30 T at 4.2 K. These coils carried up to 8.6 kA while generating 3.5 T at 4.2 K at a JE of 1020 A/mm2. Different from the unpredictable training performance of Nb-Ti and Nb3Sn magnets, these Bi-2212 magnets showed no training quenches and entered the flux flow state in a stable manner before thermal runaway and quench occurred. Also different from Nb-Ti, Nb3Sn, and REBCO magnets for which localized thermal runaways occur at unpredictable locations, the quenches of Bi-2212 magnets consistently occurred in the high field regions over a long conductor length. These characteristics make quench detection simple, enabling safe protection, and suggest a new paradigm of constructingmore » quench-predictable superconducting magnets from Bi-2212.« less

Authors:
ORCiD logo [1];  [2];  [3];  [2];  [4];  [1];  [1];  [1];  [5];  [5];  [2];  [2];  [5];  [4];  [1];  [1]; ORCiD logo [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Florida State Univ., Tallahassee, FL (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Florida State Univ., Tallahassee, FL (United States)
  4. nGimat LLC, Lexington, KY (United States)
  5. Bruker OST LLC, Carteret, NJ (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP)
OSTI Identifier:
1559235
Grant/Contract Number:  
AC02-05CH11231; SC0010421; SC0009705
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Shen, Tengming, Bosque, Ernesto, Davis, Daniel, Jiang, Jianyi, White, Marvis, Zhang, Kai, Higley, Hugh, Turqueti, Marcos, Huang, Yibing, Miao, Hanping, Trociewitz, Ulf, Hellstrom, Eric, Parrell, Jeffrey, Hunt, Andrew, Gourlay, Stephen, Prestemon, Soren, and Larbalestier, David. Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm2. United States: N. p., 2019. Web. doi:10.1038/s41598-019-46629-3.
Shen, Tengming, Bosque, Ernesto, Davis, Daniel, Jiang, Jianyi, White, Marvis, Zhang, Kai, Higley, Hugh, Turqueti, Marcos, Huang, Yibing, Miao, Hanping, Trociewitz, Ulf, Hellstrom, Eric, Parrell, Jeffrey, Hunt, Andrew, Gourlay, Stephen, Prestemon, Soren, & Larbalestier, David. Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm2. United States. https://doi.org/10.1038/s41598-019-46629-3
Shen, Tengming, Bosque, Ernesto, Davis, Daniel, Jiang, Jianyi, White, Marvis, Zhang, Kai, Higley, Hugh, Turqueti, Marcos, Huang, Yibing, Miao, Hanping, Trociewitz, Ulf, Hellstrom, Eric, Parrell, Jeffrey, Hunt, Andrew, Gourlay, Stephen, Prestemon, Soren, and Larbalestier, David. Mon . "Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm2". United States. https://doi.org/10.1038/s41598-019-46629-3. https://www.osti.gov/servlets/purl/1559235.
@article{osti_1559235,
title = {Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm2},
author = {Shen, Tengming and Bosque, Ernesto and Davis, Daniel and Jiang, Jianyi and White, Marvis and Zhang, Kai and Higley, Hugh and Turqueti, Marcos and Huang, Yibing and Miao, Hanping and Trociewitz, Ulf and Hellstrom, Eric and Parrell, Jeffrey and Hunt, Andrew and Gourlay, Stephen and Prestemon, Soren and Larbalestier, David},
abstractNote = {High-temperature superconductors (HTS) could enable high-field magnets stronger than is possible with Nb-Ti and Nb3Sn, but two challenges have so far been the low engineering critical current density JE, especially in high-current cables, and the danger of quenches. Most HTS magnets made so far have been made out of REBCO coated conductor. Here we demonstrate stable, reliable and training-quench-free performance of Bi-2212 racetrack coils wound with a Rutherford cable fabricated from wires made with a new precursor powder. These round multifilamentary wires exhibited a record JE up to 950 A/mm2 at 30 T at 4.2 K. These coils carried up to 8.6 kA while generating 3.5 T at 4.2 K at a JE of 1020 A/mm2. Different from the unpredictable training performance of Nb-Ti and Nb3Sn magnets, these Bi-2212 magnets showed no training quenches and entered the flux flow state in a stable manner before thermal runaway and quench occurred. Also different from Nb-Ti, Nb3Sn, and REBCO magnets for which localized thermal runaways occur at unpredictable locations, the quenches of Bi-2212 magnets consistently occurred in the high field regions over a long conductor length. These characteristics make quench detection simple, enabling safe protection, and suggest a new paradigm of constructing quench-predictable superconducting magnets from Bi-2212.},
doi = {10.1038/s41598-019-46629-3},
journal = {Scientific Reports},
number = 1,
volume = 9,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 47 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The generation of 25.05 T using a 5.11 T Bi 2 Sr 2 CaCu 2 O x superconducting insert magnet
journal, February 2004

  • Weijers, H. W.; Trociewitz, U. P.; Marken, K.
  • Superconductor Science and Technology, Vol. 17, Issue 4
  • DOI: 10.1088/0953-2048/17/4/012

Targets for R&D on Nb 3 Sn Conductor for High Energy Physics
journal, June 2015


Sample and length-dependent variability of 77 and 4.2 K properties in nominally identical RE123 coated conductors
journal, March 2016


Stability for Ag sheathed Bi2Sr2CaCu2O8 tape coils under strong electromagnetic force state
journal, November 2000


Superconductivity in Medicine
journal, January 2012


The generation of 25.05 T using a 5.11 T Bi 2 Sr 2 CaCu 2 O x superconducting insert magnet
journal, February 2004

  • Weijers, H. W.; Trociewitz, U. P.; Marken, K.
  • Superconductor Science and Technology, Vol. 17, Issue 4
  • DOI: 10.1088/0953-2048/17/4/012

Sample and length-dependent variability of 77 and 4.2 K properties in nominally identical RE123 coated conductors
journal, March 2016


Tripled critical current in racetrack coils made of Bi-2212 Rutherford cables with overpressure processing and leakage control
journal, September 2018

  • Zhang, Kai; Higley, Hugh; Ye, Liyang
  • Superconductor Science and Technology, Vol. 31, Issue 10
  • DOI: 10.1088/1361-6668/aada2f

A viable dipole magnet concept with REBCO CORC ® wires and further development needs for high-field magnet applications
journal, March 2018

  • Wang, Xiaorong; Caspi, Shlomo; Dietderich, Daniel R.
  • Superconductor Science and Technology, Vol. 31, Issue 4
  • DOI: 10.1088/1361-6668/aaad8f

Preparation of single phase 2212 bismuth strontium calcium cuprate by melt processing
journal, November 1989


Powering of an HTS dipole insert-magnet operated standalone in helium gas between 5 and 85 K
journal, April 2018

  • Nugteren, J. van; Kirby, G.; Bajas, H.
  • Superconductor Science and Technology, Vol. 31, Issue 6
  • DOI: 10.1088/1361-6668/aab887

Development of Bi-2212 Insert Coils for Ultra High Field Magnet Applications
journal, January 2012


Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields
journal, May 2008

  • Hunte, F.; Jaroszynski, J.; Gurevich, A.
  • Nature, Vol. 453, Issue 7197
  • DOI: 10.1038/nature07058

Assembly and Test of a 3-Nested-Coil 800-MHz REBCO Insert (H800) for the MIT 1.3 GHz LTS/HTS NMR Magnet
journal, August 2019

  • Michael, Philip C.; Park, Dongkeun; Choi, Yoon Hyuck
  • IEEE Transactions on Applied Superconductivity, Vol. 29, Issue 5
  • DOI: 10.1109/TASC.2019.2901246

Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T
journal, March 2014

  • Larbalestier, D. C.; Jiang, J.; Trociewitz, U. P.
  • Nature Materials, Vol. 13, Issue 4
  • DOI: 10.1038/nmat3887

Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T
journal, March 2014

  • Larbalestier, D. C.; Jiang, J.; Trociewitz, U. P.
  • Nature Materials, Vol. 13, Issue 4
  • DOI: 10.1038/nmat3887

Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields
journal, May 2008

  • Hunte, F.; Jaroszynski, J.; Gurevich, A.
  • Nature, Vol. 453, Issue 7197
  • DOI: 10.1038/nature07058

Resistive upper critical fields and irreversibility lines of optimally doped high- T c cuprates
journal, November 1999


Combustion chemical vapor deposition: A novel thin‐film deposition technique
journal, July 1993

  • Hunt, A. T.; Carter, W. B.; Cochran, J. K.
  • Applied Physics Letters, Vol. 63, Issue 2
  • DOI: 10.1063/1.110362

First performance test of a 25 T cryogen-free superconducting magnet
journal, May 2017

  • Awaji, Satoshi; Watanabe, Kazuo; Oguro, Hidetoshi
  • Superconductor Science and Technology, Vol. 30, Issue 6
  • DOI: 10.1088/1361-6668/aa6676

Design of a Superconducting 32 T Magnet With REBCO High Field Coils
journal, June 2012

  • Markiewicz, W. D.; Larbalestier, D. C.; Weijers, H. W.
  • IEEE Transactions on Applied Superconductivity, Vol. 22, Issue 3
  • DOI: 10.1109/TASC.2011.2174952

Progress in the Development of a Superconducting 32 T Magnet With REBCO High Field Coils
journal, June 2014

  • Weijers, H. W.; Kandel, H.; Bai, H.
  • IEEE Transactions on Applied Superconductivity, Vol. 24, Issue 3
  • DOI: 10.1109/TASC.2013.2288919

The double-helix dipole-a novel approach to accelerator magnet design
journal, June 2003

  • Goodzeit, C. L.; Ball, M. J.; Meinke, R. B.
  • IEEE Transactions on Appiled Superconductivity, Vol. 13, Issue 2, p. 1365-1368
  • DOI: 10.1109/TASC.2003.812672

Superconductivity: its role, its success and its setbacks in the Large Hadron Collider of CERN
journal, February 2010


Newly Designed 3 T MRI Magnet Wound With Bi-2223 Tape Conductors
journal, June 2013

  • Terao, Y.; Ozaki, O.; Ichihara, C.
  • IEEE Transactions on Applied Superconductivity, Vol. 23, Issue 3
  • DOI: 10.1109/TASC.2013.2239342

HTS and NMR/MRI magnets: Unique features, opportunities, and challenges
journal, October 2006


RRR and thermal conductivity of Ag and Ag-0.2 wt.%Mg alloy in Ag/Bi-2212 wires
journal, December 2015


Very-high thermal and electrical conductivity in overpressure-processed Bi 2 Sr 2 CaCu 2 O 8+ x wires
journal, May 2018


Feasible voltage-tap based quench detection in a Ag/Bi-2212 coil enabled by fast 3D normal zone propagation
journal, July 2016


Effects of Filament Size on Critical Current Density in Overpressure Processed Bi-2212 Round Wire
journal, June 2017

  • Jiang, Jianyi; Francis, Ashleigh; Alicea, Ryan
  • IEEE Transactions on Applied Superconductivity, Vol. 27, Issue 4
  • DOI: 10.1109/tasc.2016.2627817

Drastic Improvement in Mechanical Properties of DI-BSCCO Wire With Novel Lamination Material
journal, June 2015

  • Nakashima, Takayoshi; Yamazaki, Kohei; Kobayashi, Shinichi
  • IEEE Transactions on Applied Superconductivity, Vol. 25, Issue 3
  • DOI: 10.1109/TASC.2014.2385873

Very-high thermal and electrical conductivity in overpressure-processed Bi 2 Sr 2 CaCu 2 O 8+ x wires
journal, May 2018


Nearly isotropic superconductivity in (Ba,K)Fe2As2
journal, January 2009

  • Yuan, H. Q.; Singleton, J.; Balakirev, F. F.
  • Nature, Vol. 457, Issue 7229
  • DOI: 10.1038/nature07676

Analysis of an Abnormal Event in a 3-T MRI Magnet Wound With Bi-2223 Tape Conductors
journal, June 2014

  • Terao, Yasuaki; Ozaki, Osamu; Kawashima, Shinya
  • IEEE Transactions on Applied Superconductivity, Vol. 24, Issue 3
  • DOI: 10.1109/TASC.2013.2285278

Advanced Accelerator Magnets for Upgrading the LHC
journal, June 2012

  • Bottura, L.; de Rijk, G.; Rossi, L.
  • IEEE Transactions on Applied Superconductivity, Vol. 22, Issue 3
  • DOI: 10.1109/tasc.2012.2186109

Performance of the First Short Model 150-mm-Aperture Nb3Sn Quadrupole MQXFS for the High-Luminosity LHC Upgrade
journal, June 2017

  • Chlachidze, Guram; Ambrosio, Giorgio; Anerella, Michael
  • IEEE Transactions on Applied Superconductivity, Vol. 27, Issue 4
  • DOI: 10.1109/TASC.2016.2629001

Superconductivity: its role, its success and its setbacks in the Large Hadron Collider of CERN
journal, February 2010


Tripled critical current in racetrack coils made of Bi-2212 Rutherford cables with overpressure processing and leakage control
journal, September 2018

  • Zhang, Kai; Higley, Hugh; Ye, Liyang
  • Superconductor Science and Technology, Vol. 31, Issue 10
  • DOI: 10.1088/1361-6668/aada2f

Preparation of single phase 2212 bismuth strontium calcium cuprate by melt processing
journal, November 1989


Degradation of a REBCO Coil Due to Cleavage and Peeling Originating From an Electromagnetic Force
journal, June 2016

  • Kajita, Kentaro; Iguchi, Seiya; Xu, Yi
  • IEEE Transactions on Applied Superconductivity, Vol. 26, Issue 4
  • DOI: 10.1109/TASC.2016.2515564

A viable dipole magnet concept with REBCO CORC ® wires and further development needs for high-field magnet applications
journal, March 2018

  • Wang, Xiaorong; Caspi, Shlomo; Dietderich, Daniel R.
  • Superconductor Science and Technology, Vol. 31, Issue 4
  • DOI: 10.1088/1361-6668/aaad8f

The ITER Magnet System
journal, June 2008

  • Mitchell, N.; Bessette, D.; Gallix, R.
  • IEEE Transactions on Applied Superconductivity, Vol. 18, Issue 2
  • DOI: 10.1109/TASC.2008.921232

Progress in the Development and Construction of a 32-T Superconducting Magnet
journal, June 2016

  • Weijers, Hubertus W.; Hannahs, Scott T.; Murphy, Tim. P.
  • IEEE Transactions on Applied Superconductivity, Vol. 26, Issue 4
  • DOI: 10.1109/TASC.2016.2517022

HTS and NMR/MRI magnets: Unique features, opportunities, and challenges
journal, October 2006


Development of Bi-2212 Insert Coils for Ultra High Field Magnet Applications
journal, January 2012


Powering of an HTS dipole insert-magnet operated standalone in helium gas between 5 and 85 K
journal, April 2018

  • Nugteren, J. van; Kirby, G.; Bajas, H.
  • Superconductor Science and Technology, Vol. 31, Issue 6
  • DOI: 10.1088/1361-6668/aab887

Works referencing / citing this record:

A new quench detection method for HTS magnets: stray-capacitance change monitoring
journal, December 2019


Dipole Magnets Above 20 Tesla: Research Needs for a Path via High-Temperature Superconducting REBCO Conductors
journal, November 2019