DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Drift-ideal magnetohydrodynamic simulations of m = 0 modes in Z-pinch plasmas

Abstract

In this paper, the effects of m = 0 modes on equilibrium Z-pinch plasmas are studied using a drift-ideal magnetohydrodynamic (MHD) model. The model equations are an extension of ideal MHD to include finite-ion-inertial-length/cyclotron-frequency (Ωi) effects in Ohm's law and in the electron and ion heat transport equations. The linear modes contained in this model include the ideal interchange (sausage) mode and in the magnetized limit, Ωiτi»1 with τi the ion collision time, nonideal entropy modes. It is well known that these two modes are decoupled in the kρs « 1 limit, where k is the axial mode number and ρs = csi is the gyro-Bohm scale with cs the sound speed [B. Kadomtsev, Sov. Phys. JETP-USSR 10, 780 (1960)]. For Bennett equilibrium profiles, it is shown that the regions of stability for both modes are completely governed by the adiabatic coefficient γ in these limits. Equilibria with Bennett profiles are stable to entropy modes for γ < 2 but unstable to ideal modes and vice versa for γ > 2. However, these modes are no longer decoupled when kρs≳1. The simulation results of the fully nonlinear set of equations in the magnetized limit show that seeded modes with kρs≳1more » and γ = 5/3 display the characteristics of both ideal and entropy modes. The general heat flux for both ions and electrons as a function of the species magnetization is retained in the model. Both the linear and nonlinear behaviors of seeded modes for kρs≳1 display a strong dependence on the magnetization of the ions. Lastly, the growth rate increases linearly with k at large kρs when the ions are magnetized but decreases with increasing k when Ωiτi≲1.« less

Authors:
ORCiD logo [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1558863
Alternate Identifier(s):
OSTI ID: 1544456
Report Number(s):
LLNL-JRNL-767947
Journal ID: ISSN 1070-664X; 958625; TRN: US2000258
Grant/Contract Number:  
AC52-07NA27344; 18-ERD-007
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 26; Journal Issue: 7; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Angus, J. R., Dorf, M., and Geyko, V. I. Drift-ideal magnetohydrodynamic simulations of m = 0 modes in Z-pinch plasmas. United States: N. p., 2019. Web. doi:10.1063/1.5093625.
Angus, J. R., Dorf, M., & Geyko, V. I. Drift-ideal magnetohydrodynamic simulations of m = 0 modes in Z-pinch plasmas. United States. https://doi.org/10.1063/1.5093625
Angus, J. R., Dorf, M., and Geyko, V. I. Tue . "Drift-ideal magnetohydrodynamic simulations of m = 0 modes in Z-pinch plasmas". United States. https://doi.org/10.1063/1.5093625. https://www.osti.gov/servlets/purl/1558863.
@article{osti_1558863,
title = {Drift-ideal magnetohydrodynamic simulations of m = 0 modes in Z-pinch plasmas},
author = {Angus, J. R. and Dorf, M. and Geyko, V. I.},
abstractNote = {In this paper, the effects of m = 0 modes on equilibrium Z-pinch plasmas are studied using a drift-ideal magnetohydrodynamic (MHD) model. The model equations are an extension of ideal MHD to include finite-ion-inertial-length/cyclotron-frequency (Ωi) effects in Ohm's law and in the electron and ion heat transport equations. The linear modes contained in this model include the ideal interchange (sausage) mode and in the magnetized limit, Ωiτi»1 with τi the ion collision time, nonideal entropy modes. It is well known that these two modes are decoupled in the kρs « 1 limit, where k is the axial mode number and ρs = cs/Ωi is the gyro-Bohm scale with cs the sound speed [B. Kadomtsev, Sov. Phys. JETP-USSR 10, 780 (1960)]. For Bennett equilibrium profiles, it is shown that the regions of stability for both modes are completely governed by the adiabatic coefficient γ in these limits. Equilibria with Bennett profiles are stable to entropy modes for γ < 2 but unstable to ideal modes and vice versa for γ > 2. However, these modes are no longer decoupled when kρs≳1. The simulation results of the fully nonlinear set of equations in the magnetized limit show that seeded modes with kρs≳1 and γ = 5/3 display the characteristics of both ideal and entropy modes. The general heat flux for both ions and electrons as a function of the species magnetization is retained in the model. Both the linear and nonlinear behaviors of seeded modes for kρs≳1 display a strong dependence on the magnetization of the ions. Lastly, the growth rate increases linearly with k at large kρs when the ions are magnetized but decreases with increasing k when Ωiτi≲1.},
doi = {10.1063/1.5093625},
journal = {Physics of Plasmas},
number = 7,
volume = 26,
place = {United States},
year = {Tue Jul 23 00:00:00 EDT 2019},
month = {Tue Jul 23 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Normalized Bennett equilibrium profiles for pressure and magnetic field as given by Eq. 38.

Save / Share:

Works referenced in this record:

A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws
journal, December 2003

  • Ren, Yu-Xin; Liu, Miao’er; Zhang, Hanxin
  • Journal of Computational Physics, Vol. 192, Issue 2
  • DOI: 10.1016/j.jcp.2003.07.006

A study of the stability of the Z pinch under fusion conditions using the Hall fluid model
journal, January 1984

  • Coppins, M.; Bond, D. J.; Haines, M. G.
  • Physics of Fluids, Vol. 27, Issue 12
  • DOI: 10.1063/1.864603

Gyrokinetic linear theory of the entropy mode in a Z pinch
journal, June 2006

  • Ricci, Paolo; Rogers, B. N.; Dorland, W.
  • Physics of Plasmas, Vol. 13, Issue 6
  • DOI: 10.1063/1.2205830

Ideal magnetohydrodynamic theory of magnetic fusion systems
journal, July 1982


A review of the dense Z -pinch
journal, June 2011


An attempt to produce a thermo-nuclear reaction in deuterium by means of a high current spark discharge
journal, February 1952

  • Reynolds, P.; Craggs, J. D.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 43, Issue 337
  • DOI: 10.1080/14786440208561093

A Primer on Eulerian Computational Fluid Dynamics for Astrophysics
journal, March 2003

  • Trac, Hy; Pen, Ue‐Li
  • Publications of the Astronomical Society of the Pacific, Vol. 115, Issue 805
  • DOI: 10.1086/367747

The influence of Hall physics on power-flow along a coaxial transmission line
journal, October 2018

  • Hamlin, N. D.; Seyler, C. E.
  • Physics of Plasmas, Vol. 25, Issue 10
  • DOI: 10.1063/1.5042441

Linear analysis of sheared flow stabilization of global magnetohydrodynamic instabilities based on the Hall fluid model
journal, March 2002

  • Sotnikov, V. I.; Paraschiv, I.; Makhin, V.
  • Physics of Plasmas, Vol. 9, Issue 3
  • DOI: 10.1063/1.1453474

Vlasov-Fluid Model for Studying Gross Stability of High-β Plasmas
journal, January 1972


Linear stability of the collisionless, large Larmor radius Z-pinch
journal, July 1997

  • Russell, P. G. F.; Arber, T. D.; Coppins, M.
  • Physics of Plasmas, Vol. 4, Issue 7
  • DOI: 10.1063/1.872237

Kinetic stability of the finite electron temperature Z -pinch
journal, April 1997


Harmonics of the Kruskal Limit and Field Diffusion in a Toroidal Pinch Discharge
journal, January 1962


Interchange modes in a collisional plasma
journal, January 2000


Recent theoretical progress in understanding coherent structures in edge and SOL turbulence
journal, October 2008

  • Krasheninnikov, S. I.; D'Ippolito, D. A.; Myra, J. R.
  • Journal of Plasma Physics, Vol. 74, Issue 5
  • DOI: 10.1017/S0022377807006940

Drift-ideal magnetohydrodynamics
journal, January 1984

  • Hassam, A. B.; Lee, Y. C.
  • Physics of Fluids, Vol. 27, Issue 2
  • DOI: 10.1063/1.864639

Increasing plasma parameters using sheared flow stabilization of a Z-pinch
journal, May 2017

  • Shumlak, U.; Nelson, B. A.; Claveau, E. L.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4977468

The effect of sheared axial flow on the linear stability of the Z‐pinch
journal, February 1996

  • Arber, T. D.; Howell, D. F.
  • Physics of Plasmas, Vol. 3, Issue 2
  • DOI: 10.1063/1.871882

Evidence of Stabilization in the Z -Pinch
journal, October 2001


Resistive and viscous effects on z-pinch stability
journal, July 1990


Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches
journal, January 2011

  • Seyler, C. E.; Martin, M. R.
  • Physics of Plasmas, Vol. 18, Issue 1
  • DOI: 10.1063/1.3543799

A stable and accurate convective modelling procedure based on quadratic upstream interpolation
journal, June 1979


Vlasov fluid stability of the m =0 mode in a skin current Z pinch
journal, November 1989

  • Arber, T. D.; Coppins, M.
  • Physics of Fluids B: Plasma Physics, Vol. 1, Issue 11
  • DOI: 10.1063/1.859045

Long mean-free path collisional stability of electromagnetic modes in axisymmetric closed magnetic field configurations
journal, January 2002

  • Simakov, Andrei N.; Hastie, R. J.; Catto, Peter J.
  • Physics of Plasmas, Vol. 9, Issue 1
  • DOI: 10.1063/1.1424309

The physics of fast Z pinches
journal, January 2000


Vlasov fluid stability of a skin current Z pinch with finite electron pressure
journal, May 1991

  • Arber, T. D.
  • Physics of Fluids B: Plasma Physics, Vol. 3, Issue 5
  • DOI: 10.1063/1.859806

Electrostatic drift modes in a closed field line configuration
journal, February 2002

  • Kesner, J.; Hastie, R. J.
  • Physics of Plasmas, Vol. 9, Issue 2
  • DOI: 10.1063/1.1431594

Drift-ordered fluid equations for field-aligned modes in low-β collisional plasma with equilibrium pressure pedestals
journal, December 2003

  • Simakov, Andrei N.; Catto, Peter J.
  • Physics of Plasmas, Vol. 10, Issue 12
  • DOI: 10.1063/1.1623492

Hydromagnetic Instabilities of an Ideally Conducting Fluid
journal, January 1957


Measurements of the electron impact ionisation cross sections of He, C, O and N atoms
journal, September 1978

  • Brook, E.; Harrison, M. F. A.; Smith, A. C. H.
  • Journal of Physics B: Atomic and Molecular Physics, Vol. 11, Issue 17
  • DOI: 10.1088/0022-3700/11/17/021

Stabilization of Z pinch by velocity shear
journal, November 2000

  • DeSouza-Machado, S.; Hassam, A. B.; Sina, Ramin
  • Physics of Plasmas, Vol. 7, Issue 11
  • DOI: 10.1063/1.1316086

Linear Stability of the High Temperature, Dense Z Pinch
journal, April 1995


An energy principle for hydromagnetic stability problems
journal, February 1958

  • Bernstein, I. B.; Frieman, E. A.; Kruskal, Martin David
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 244, Issue 1236, p. 17-40
  • DOI: 10.1098/rspa.1958.0023

A Free, Fast, Simple, and Efficient Total Variation Diminishing Magnetohydrodynamic Code
journal, December 2003

  • Pen, Ue‐Li; Arras, Phil; Wong, ShingKwong
  • The Astrophysical Journal Supplement Series, Vol. 149, Issue 2
  • DOI: 10.1086/378771

Comment on “Sheared Flow Stabilization of the m = 1 Kink Mode in Z Pinches”
journal, March 1996


On the influence of the Hall effect on the spectrum of the ideal magnetohydrodynamic cylindrical pinch
journal, February 1983


Continuum kinetic modelling of cross-separatrix plasma transport in a tokamak edge including self-consistent electric fields
journal, March 2018


Calculation of the Equilibrium Evolution of the ZaP Flow $Z$ -Pinch Using a Four-Chord Interferometer
journal, August 2015

  • Knecht, Sean D.; Golingo, Raymond P.; Nelson, Brian A.
  • IEEE Transactions on Plasma Science, Vol. 43, Issue 8
  • DOI: 10.1109/TPS.2015.2431973

Magnetically Self-Focussing Streams
journal, June 1934


Ideal magnetohydrodynamic linear instabilities in the Z-pinch
journal, March 1988


Positivity-preserving high order finite difference WENO schemes for compressible Euler equations
journal, March 2012


Large Larmor radius stability of the z pinch
journal, April 1994


Anisotropic Z‐pinch equilibria and their stability
journal, October 1992

  • Coppins, M.; Scheffel, J.
  • Physics of Fluids B: Plasma Physics, Vol. 4, Issue 10
  • DOI: 10.1063/1.860380

Sheared Flow Stabilization of the m = 1 Kink Mode in Z Pinches
journal, October 1995


Reconsideration of the m-0 Z-pinch stability
journal, January 1993


Nonlinear full two-fluid study of m=0 sausage instabilities in an axisymmetric Z pinch
journal, August 2006

  • Loverich, J.; Shumlak, U.
  • Physics of Plasmas, Vol. 13, Issue 8
  • DOI: 10.1063/1.2220009

Nonlinear evolution of the sausage instability
journal, January 1976

  • Book, David L.; Ott, Edward; Lampe, Martin
  • Physics of Fluids, Vol. 19, Issue 12
  • DOI: 10.1063/1.861429

Shumlak and Hartman Reply:
journal, March 1996


The relaxation schemes for systems of conservation laws in arbitrary space dimensions
journal, January 1995

  • Jin, Shi; Xin, Zhouping
  • Communications on Pure and Applied Mathematics, Vol. 48, Issue 3
  • DOI: 10.1002/cpa.3160480303

Linear and nonlinear development of m=0 instability in a diffuse Bennett Z-pinch equilibrium with sheared axial flow
journal, July 2010

  • Paraschiv, I.; Bauer, B. S.; Lindemuth, I. R.
  • Physics of Plasmas, Vol. 17, Issue 7
  • DOI: 10.1063/1.3457925

Kinetic stability of electrostatic plasma modes in a dipolar magnetic field
journal, October 2001

  • Simakov, Andrei N.; Catto, Peter J.; Hastie, R. J.
  • Physics of Plasmas, Vol. 8, Issue 10
  • DOI: 10.1063/1.1399058

High-order discretization of a gyrokinetic Vlasov model in edge plasma geometry
journal, November 2018

  • Dorr, Milo R.; Colella, Phillip; Dorf, Mikhail A.
  • Journal of Computational Physics, Vol. 373
  • DOI: 10.1016/j.jcp.2018.07.008

Development of global magnetohydrodynamic instabilities in Z-pinch plasmas in the presence of nonideal effects
journal, May 2004

  • Sotnikov, V. I.; Bauer, B. S.; Leboeuf, J. N.
  • Physics of Plasmas, Vol. 11, Issue 5
  • DOI: 10.1063/1.1691452

Efficient Implementation of Weighted ENO Schemes
journal, June 1996

  • Jiang, Guang-Shan; Shu, Chi-Wang
  • Journal of Computational Physics, Vol. 126, Issue 1
  • DOI: 10.1006/jcph.1996.0130

On the possibility of producing thermonuclear reactions in a gas discharge
journal, February 1957


Sheared flow stabilization experiments in the ZaP flow Z pinch
journal, May 2003

  • Shumlak, U.; Nelson, B. A.; Golingo, R. P.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1558294

Evidence of Stabilization in the Z-Pinch
text, January 2001

  • Den Hartog, D. J.; Golingo, R. P.; Nelson, B. A.
  • The American Physical Society
  • DOI: 10.17877/de290r-11380

Works referencing / citing this record:

One-dimensional theory and simulations of the dynamic Z-pinch
journal, January 2020

  • Angus, J. R.; Link, A. J.; Schmidt, A. E. W.
  • Physics of Plasmas, Vol. 27, Issue 1
  • DOI: 10.1063/1.5104340