skip to main content

DOE PAGESDOE PAGES

Title: Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment

Here, we present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the “Biermann battery” mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the field is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ω eτ ei≲1, where Ω e = eB/m ec and τ ei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high- Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the lasermore » beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P 2/P 0 by ~20%. As a result, this indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.« less
Authors:
ORCiD logo [1] ;  [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Report Number(s):
LLNL-JRNL-722081
Journal ID: ISSN 1070-664X
Grant/Contract Number:
AC52-07NA27344
Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION
OSTI Identifier:
1357408
Alternate Identifier(s):
OSTI ID: 1361878