DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

Abstract

Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. Iin this work, by combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2, MoSe2, WS2, orWSe2, are directly determined and mapped.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]
  1. Univ. of Illinois, Chicago, IL (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE; National Science Foundation (NSF)
OSTI Identifier:
1544329
Alternate Identifier(s):
OSTI ID: 1419365
Grant/Contract Number:  
EFMA-1542864; DMR-0959470; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 5; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Hu, Xuan, Yasaei, Poya, Jokisaari, Jacob, Öğüt, Serdar, Salehi-Khojin, Amin, and Klie, Robert F. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale. United States: N. p., 2018. Web. doi:10.1103/physrevlett.120.055902.
Hu, Xuan, Yasaei, Poya, Jokisaari, Jacob, Öğüt, Serdar, Salehi-Khojin, Amin, & Klie, Robert F. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale. United States. https://doi.org/10.1103/physrevlett.120.055902
Hu, Xuan, Yasaei, Poya, Jokisaari, Jacob, Öğüt, Serdar, Salehi-Khojin, Amin, and Klie, Robert F. Fri . "Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale". United States. https://doi.org/10.1103/physrevlett.120.055902. https://www.osti.gov/servlets/purl/1544329.
@article{osti_1544329,
title = {Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale},
author = {Hu, Xuan and Yasaei, Poya and Jokisaari, Jacob and Öğüt, Serdar and Salehi-Khojin, Amin and Klie, Robert F.},
abstractNote = {Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. Iin this work, by combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2, MoSe2, WS2, orWSe2, are directly determined and mapped.},
doi = {10.1103/physrevlett.120.055902},
journal = {Physical Review Letters},
number = 5,
volume = 120,
place = {United States},
year = {Fri Feb 02 00:00:00 EST 2018},
month = {Fri Feb 02 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 52 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Graphene spintronics
journal, October 2014

  • Han, Wei; Kawakami, Roland K.; Gmitra, Martin
  • Nature Nanotechnology, Vol. 9, Issue 10
  • DOI: 10.1038/nnano.2014.214

Photodetectors based on graphene, other two-dimensional materials and hybrid systems
journal, October 2014

  • Koppens, F. H. L.; Mueller, T.; Avouris, Ph.
  • Nature Nanotechnology, Vol. 9, Issue 10
  • DOI: 10.1038/nnano.2014.215

Quantitative Thermometry of Nanoscale Hot Spots
journal, January 2012

  • Menges, Fabian; Riel, Heike; Stemmer, Andreas
  • Nano Letters, Vol. 12, Issue 2, p. 596-601
  • DOI: 10.1021/nl203169t

Thermal imaging by atomic force microscopy using thermocouple cantilever probes
journal, June 1995

  • Majumdar, A.; Lai, J.; Chandrachood, M.
  • Review of Scientific Instruments, Vol. 66, Issue 6
  • DOI: 10.1063/1.1145474

Nanostructured transition metal dichalcogenide electrocatalysts for CO 2 reduction in ionic liquid
journal, July 2016


Thermal Expansion, Anharmonicity and Temperature-Dependent Raman Spectra of Single- and Few-Layer MoSe 2 and WSe 2
journal, April 2014

  • Late, Dattatray J.; Shirodkar, Sharmila N.; Waghmare, Umesh V.
  • ChemPhysChem, Vol. 15, Issue 8
  • DOI: 10.1002/cphc.201400020

Single-Layer MoS 2 Electronics
journal, December 2014

  • Lembke, Dominik; Bertolazzi, Simone; Kis, Andras
  • Accounts of Chemical Research, Vol. 48, Issue 1
  • DOI: 10.1021/ar500274q

Graphene transistors
journal, May 2010


The thermal expansion of 2 H -MoS 2 and 2 H -WSe 2 between 10 and 320 K
journal, June 1979


Size dependence of plasmon energy in Si clusters
journal, July 1992

  • Mitome, M.; Yamazaki, Y.; Takagi, H.
  • Journal of Applied Physics, Vol. 72, Issue 2
  • DOI: 10.1063/1.351820

Highly Textured Films of Layered Metal Disulfide 2H-WS[sub 2]
journal, January 1997

  • Matthäus, A.
  • Journal of The Electrochemical Society, Vol. 144, Issue 3
  • DOI: 10.1149/1.1837522

The thermal expansion of 2 H -MoS 2 , 2 H -MoSe 2 and 2 H -WSe 2 between 20 and 800°C
journal, October 1976


Sub-10 nm Carbon Nanotube Transistor
journal, January 2012

  • Franklin, Aaron D.; Luisier, Mathieu; Han, Shu-Jen
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203701g

Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers
journal, November 2016

  • Yu, Woo Jong; Vu, Quoc An; Oh, Hyemin
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13278

Plasmon modes in graphene: status and prospect
journal, January 2014

  • Politano, Antonio; Chiarello, Gennaro
  • Nanoscale, Vol. 6, Issue 19
  • DOI: 10.1039/C4NR03143A

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Bimodal Phonon Scattering in Graphene Grain Boundaries
journal, June 2015


Ultrahigh electron mobility in suspended graphene
journal, June 2008

  • Bolotin, K. I.; Sikes, K. J.; Jiang, Z.
  • Solid State Communications, Vol. 146, Issue 9-10, p. 351-355
  • DOI: 10.1016/j.ssc.2008.02.024

Localization of inelastic electron scattering in the low-loss energy regime
journal, August 2012


Anisotropic Thermal Expansion of Pyrolytic Graphite at Low Temperatures
journal, December 1970

  • Bailey, A. C.; Yates, B.
  • Journal of Applied Physics, Vol. 41, Issue 13
  • DOI: 10.1063/1.1658609

�ber die Abh�ngigkeit der charakteristischen Energieverluste von Temperatur und Streuwinkel
journal, February 1957


An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes
journal, May 2012

  • Li, Yanguang; Zhou, Wu; Wang, Hailiang
  • Nature Nanotechnology, Vol. 7, Issue 6
  • DOI: 10.1038/nnano.2012.72

Charged Nanoparticle Dynamics in Water Induced by Scanning Transmission Electron Microscopy
journal, February 2012

  • White, E. R.; Mecklenburg, Matthew; Shevitski, Brian
  • Langmuir, Vol. 28, Issue 8
  • DOI: 10.1021/la2048486

In-plane thermal conductivity of disordered layered WSe2 and (W)x(WSe2)y superlattice films
journal, October 2007

  • Mavrokefalos, Anastassios; Nguyen, Ngoc T.; Pettes, Michael T.
  • Applied Physics Letters, Vol. 91, Issue 17
  • DOI: 10.1063/1.2800888

X-ray Study and Thermoelectric Properties of the W[sub x]Ta[sub 1−x]Se[sub 2] System
journal, January 1963

  • Brixner, L. H.
  • Journal of The Electrochemical Society, Vol. 110, Issue 4
  • DOI: 10.1149/1.2425734

Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy
journal, January 2012

  • Okabe, Kohki; Inada, Noriko; Gota, Chie
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1714

Temperature mapping of operating nanoscale devices by scanning probe thermometry
journal, March 2016

  • Menges, Fabian; Mensch, Philipp; Schmid, Heinz
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10874

Superior Thermal Conductivity of Single-Layer Graphene
journal, March 2008

  • Balandin, Alexander A.; Ghosh, Suchismita; Bao, Wenzhong
  • Nano Letters, Vol. 8, Issue 3, p. 902-907
  • DOI: 10.1021/nl0731872

Resistivity of Graphene Nanoribbon Interconnects
journal, June 2009

  • Murali, Raghunath; Brenner, Kevin; Yang, Yinxiao
  • IEEE Electron Device Letters, Vol. 30, Issue 6
  • DOI: 10.1109/LED.2009.2020182

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
journal, November 2012

  • Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras
  • Nature Nanotechnology, Vol. 7, Issue 11, p. 699-712
  • DOI: 10.1038/nnano.2012.193

Thermometry at the nanoscale
journal, January 2012

  • Brites, Carlos D. S.; Lima, Patricia P.; Silva, Nuno J. O.
  • Nanoscale, Vol. 4, Issue 16
  • DOI: 10.1039/c2nr30663h

Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers
journal, September 2007

  • Calizo, I.; Balandin, A. A.; Bao, W.
  • Nano Letters, Vol. 7, Issue 9
  • DOI: 10.1021/nl071033g

Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy
journal, April 2006

  • Wang, Y. W.; Kim, J. S.; Kim, G. H.
  • Applied Physics Letters, Vol. 88, Issue 14
  • DOI: 10.1063/1.2192624

Graphene quilts for thermal management of high-power GaN transistors
journal, January 2012

  • Yan, Zhong; Liu, Guanxiong; Khan, Javed M.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1828

Nanoscale temperature mapping in operating microelectronic devices
journal, February 2015

  • Mecklenburg, Matthew; Hubbard, William A.; White, E. R.
  • Science, Vol. 347, Issue 6222
  • DOI: 10.1126/science.aaa2433

High-yield production of graphene by liquid-phase exfoliation of graphite
journal, August 2008

  • Hernandez, Yenny; Nicolosi, Valeria; Lotya, Mustafa
  • Nature Nanotechnology, Vol. 3, Issue 9, p. 563-568
  • DOI: 10.1038/nnano.2008.215

Local-Field Effects in the Optical Spectrum of Silicon
journal, January 1975

  • Louie, Steven G.; Chelikowsky, James R.; Cohen, Marvin L.
  • Physical Review Letters, Vol. 34, Issue 3
  • DOI: 10.1103/PhysRevLett.34.155

Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures
journal, February 2012


Plasmon spectroscopy of free-standing graphene films
journal, June 2008


The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Single-layer MoS2 transistors
journal, January 2011

  • Radisavljevic, B.; Radenovic, A.; Brivio, J.
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 147-150
  • DOI: 10.1038/nnano.2010.279

Biaxial Compressive Strain Engineering in Graphene/Boron Nitride Heterostructures
journal, November 2012

  • Pan, Wei; Xiao, Jianliang; Zhu, Junwei
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00893

Thermal radiation scanning tunnelling microscopy
journal, December 2006

  • De Wilde, Yannick; Formanek, Florian; Carminati, Rémi
  • Nature, Vol. 444, Issue 7120
  • DOI: 10.1038/nature05265

The rise of graphene
book, August 2009

  • Rodgers, Peter; Geim, A. K.; Novoselov, K. S.
  • Nanoscience and Technology: A Collection of Reviews from Nature Journals, p. 11-19
  • DOI: 10.1142/9789814287005_0002

Sub-10 nm carbon nanotube transistor
conference, December 2011

  • Franklin, Aaron D.; Han, Shu-Jen; Tulevski, George S.
  • 2011 IEEE International Electron Devices Meeting (IEDM), 2011 International Electron Devices Meeting
  • DOI: 10.1109/iedm.2011.6131600

Graphene spintronics
conference, August 2010

  • Shiraishi, Masashi
  • SPIE NanoScience + Engineering, SPIE Proceedings
  • DOI: 10.1117/12.861584

High yield production of graphene by liquid phase exfoliation of graphite
text, January 2008

  • Hernandez, Y.; V., Nicolosi; M., Lotya
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.33429

Temperature mapping of operating nanoscale devices by scanning probe thermometry
text, January 2016


Ultrahigh electron mobility in suspended graphene
text, January 2008


Resistivity of Graphene Nanoribbon Interconnects
text, January 2009


Works referencing / citing this record:

Spatial Mapping of Hot‐Spots at Lateral Heterogeneities in Monolayer Transition Metal Dichalcogenides
journal, April 2019


Biaxial Strain‐Mediated Room Temperature Ferromagnetism of ReS 2 Web Buckles
journal, September 2019

  • Ren, Hongtao; Xiang, Gang; Lu, Jiating
  • Advanced Electronic Materials, Vol. 5, Issue 12
  • DOI: 10.1002/aelm.201900814

Advances in Graphene‐Based Liquid Cell Electron Microscopy: Working Principles, Opportunities, and Challenges
journal, January 2019

  • Ghodsi, Seyed Mohammadreza; Megaridis, Constantine M.; Shahbazian‐Yassar, Reza
  • Small Methods, Vol. 3, Issue 5
  • DOI: 10.1002/smtd.201900026

Measuring temperature-dependent thermal diffuse scattering using scanning transmission electron microscopy
journal, December 2018

  • Wehmeyer, Geoff; Bustillo, Karen C.; Minor, Andrew M.
  • Applied Physics Letters, Vol. 113, Issue 25
  • DOI: 10.1063/1.5066111

Locally defined quantum emission from epitaxial few-layer tungsten diselenide
journal, May 2019

  • Wu, Wei; Dass, Chandriker K.; Hendrickson, Joshua R.
  • Applied Physics Letters, Vol. 114, Issue 21
  • DOI: 10.1063/1.5091779

Measuring nanoscale thermal gradients in suspended MoS 2 with STEM-EELS
journal, October 2019

  • Shen, Lang; Mecklenburg, Matthew; Dhall, Rohan
  • Applied Physics Letters, Vol. 115, Issue 15
  • DOI: 10.1063/1.5094443

Modeling ballistic phonon transport from a cylindrical electron beam heat source
journal, September 2019

  • Wehmeyer, Geoff
  • Journal of Applied Physics, Vol. 126, Issue 12
  • DOI: 10.1063/1.5115165

Mechanical properties of monolayer ternary transitional metal dichalogenides MoS 2 x Te 2(1 −  x ) : A molecular dynamics study
journal, December 2019

  • Ying, Penghua; Zhang, Jin; Zhong, Zheng
  • Journal of Applied Physics, Vol. 126, Issue 21
  • DOI: 10.1063/1.5122264

Growth of two-dimensional materials on hexagonal boron nitride ( h -BN)
journal, November 2018


A systematic study of the negative thermal expansion in zinc-blende and diamond-like semiconductors
journal, December 2019


Experimental determination of surface thermal expansion and electron–phonon coupling constant of 1T-PtTe 2
journal, January 2020


Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials
journal, August 2019

  • Vaziri, Sam; Yalon, Eilam; Muñoz Rojo, Miguel
  • Science Advances, Vol. 5, Issue 8
  • DOI: 10.1126/sciadv.aax1325