DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales

Abstract

Anthropogenic methane emissions originate from a large number of fine-scale and often transient point sources. Satellite observations of atmospheric methane columns are an attractive approach for monitoring these emissions but have limitations from instrument precision, pixel resolution, and measurement frequency. Dense observations will soon be available in both low-Earth and geostationary orbits, but the extent to which they can provide fine-scale information on methane sources has yet to be explored. Here we present an observation system simulation experiment (OSSE) to assess the capabilities of different satellite observing system configurations. We conduct a 1-week WRF-STILT simulation to generate methane column footprints at 1.3 × 1.3 km2 spatial resolution and hourly temporal resolution over a 290 × 235 km2 domain in the Barnett Shale, a major oil and gas field in Texas with a large number of point sources. We sub-sample these footprints to match the observing characteristics of the recently launched TROPOMI instrument (7 × 7 km2 pixels, 11 ppb precision, daily frequency), the planned GeoCARB instrument (2.7 × 3.0 km2 pixels, 4 ppb precision, nominal twice-daily frequency), and other proposed observing configurations. The information content of the various observing systems is evaluated using the Fisher information matrix and its eigenvalues.more » We find that a week of TROPOMI observations should provide information on temporally invariant emissions at ~30 km spatial resolution. GeoCARB should provide information available on temporally invariant emissions ~2–7 km spatial resolution depending on sampling frequency (hourly to daily). Improvements to the instrument precision yield greater increases in information content than improved sampling frequency. A precision better than 6 ppb is critical for GeoCARB to achieve fine resolution of emissions. Transient emissions would be missed with either TROPOMI or GeoCARB. An aspirational high-resolution geostationary instrument with 1.3 × 1.3 km2 pixel resolution, hourly return time, and 1 ppb precision would effectively constrain the temporally invariant emissions in the Barnett Shale at the kilometer scale and provide some information on hourly variability of sources.« less

Authors:
ORCiD logo [1];  [2];  [2];  [3];  [3];  [3]
  1. Univ. of California, Berkeley, CA (United States); Harvard Univ., Cambridge, MA (United States)
  2. Harvard Univ., Cambridge, MA (United States)
  3. ExxonMobil Research and Engineering Company, Annandale, NJ (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Univ. of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1544100
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 18; Journal Issue: 11; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences

Citation Formats

Turner, Alexander J., Jacob, Daniel J., Benmergui, Joshua, Brandman, Jeremy, White, Laurent, and Randles, Cynthia A. Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales. United States: N. p., 2018. Web. doi:10.5194/acp-18-8265-2018.
Turner, Alexander J., Jacob, Daniel J., Benmergui, Joshua, Brandman, Jeremy, White, Laurent, & Randles, Cynthia A. Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales. United States. https://doi.org/10.5194/acp-18-8265-2018
Turner, Alexander J., Jacob, Daniel J., Benmergui, Joshua, Brandman, Jeremy, White, Laurent, and Randles, Cynthia A. Wed . "Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales". United States. https://doi.org/10.5194/acp-18-8265-2018. https://www.osti.gov/servlets/purl/1544100.
@article{osti_1544100,
title = {Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales},
author = {Turner, Alexander J. and Jacob, Daniel J. and Benmergui, Joshua and Brandman, Jeremy and White, Laurent and Randles, Cynthia A.},
abstractNote = {Anthropogenic methane emissions originate from a large number of fine-scale and often transient point sources. Satellite observations of atmospheric methane columns are an attractive approach for monitoring these emissions but have limitations from instrument precision, pixel resolution, and measurement frequency. Dense observations will soon be available in both low-Earth and geostationary orbits, but the extent to which they can provide fine-scale information on methane sources has yet to be explored. Here we present an observation system simulation experiment (OSSE) to assess the capabilities of different satellite observing system configurations. We conduct a 1-week WRF-STILT simulation to generate methane column footprints at 1.3 × 1.3 km2 spatial resolution and hourly temporal resolution over a 290 × 235 km2 domain in the Barnett Shale, a major oil and gas field in Texas with a large number of point sources. We sub-sample these footprints to match the observing characteristics of the recently launched TROPOMI instrument (7 × 7 km2 pixels, 11 ppb precision, daily frequency), the planned GeoCARB instrument (2.7 × 3.0 km2 pixels, 4 ppb precision, nominal twice-daily frequency), and other proposed observing configurations. The information content of the various observing systems is evaluated using the Fisher information matrix and its eigenvalues. We find that a week of TROPOMI observations should provide information on temporally invariant emissions at ~30 km spatial resolution. GeoCARB should provide information available on temporally invariant emissions ~2–7 km spatial resolution depending on sampling frequency (hourly to daily). Improvements to the instrument precision yield greater increases in information content than improved sampling frequency. A precision better than 6 ppb is critical for GeoCARB to achieve fine resolution of emissions. Transient emissions would be missed with either TROPOMI or GeoCARB. An aspirational high-resolution geostationary instrument with 1.3 × 1.3 km2 pixel resolution, hourly return time, and 1 ppb precision would effectively constrain the temporally invariant emissions in the Barnett Shale at the kilometer scale and provide some information on hourly variability of sources.},
doi = {10.5194/acp-18-8265-2018},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 11,
volume = 18,
place = {United States},
year = {Wed Jun 13 00:00:00 EDT 2018},
month = {Wed Jun 13 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 26 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantifying lower tropospheric methane concentrations using GOSAT near-IR and TES thermal IR measurements
journal, January 2015

  • Worden, J. R.; Turner, A. J.; Bloom, A.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 8
  • DOI: 10.5194/amt-8-3433-2015

Anthropogenic emissions of methane in the United States
journal, November 2013

  • Miller, S. M.; Wofsy, S. C.; Michalak, A. M.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 50
  • DOI: 10.1073/pnas.1314392110

Geostationary Emission Explorer for Europe (G3E): mission concept and initial performance assessment
journal, January 2015

  • Butz, A.; Orphal, J.; Checa-Garcia, R.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 11
  • DOI: 10.5194/amt-8-4719-2015

The operational methane retrieval algorithm for TROPOMI
journal, January 2016

  • Hu, Haili; Hasekamp, Otto; Butz, André
  • Atmospheric Measurement Techniques, Vol. 9, Issue 11
  • DOI: 10.5194/amt-9-5423-2016

Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA
journal, February 2016


TROPOMI aboard Sentinel-5 Precursor: Prospective performance of CH4 retrievals for aerosol and cirrus loaded atmospheres
journal, May 2012


Assessing Methane Emissions from Global Space-Borne Observations
journal, May 2005


On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements
journal, January 2014

  • Cressot, C.; Chevallier, F.; Bousquet, P.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 2
  • DOI: 10.5194/acp-14-577-2014

Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin
journal, June 2015

  • Lavoie, Tegan N.; Shepson, Paul B.; Cambaliza, Maria O. L.
  • Environmental Science & Technology, Vol. 49, Issue 13
  • DOI: 10.1021/acs.est.5b00410

The global methane budget 2000–2012
journal, January 2016

  • Saunois, Marielle; Bousquet, Philippe; Poulter, Ben
  • Earth System Science Data, Vol. 8, Issue 2
  • DOI: 10.5194/essd-8-697-2016

An Introduction To Compressive Sampling
journal, March 2008


Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region
journal, June 2015

  • Karion, Anna; Sweeney, Colm; Kort, Eric A.
  • Environmental Science & Technology, Vol. 49, Issue 13
  • DOI: 10.1021/acs.est.5b00217

Potential of a geostationary geoCARB mission to estimate surface emissions of CO 2 , CH 4 and CO in a polluted urban environment: case study Shanghai
journal, January 2016

  • O'Brien, Denis M.; Polonsky, Igor N.; Utembe, Steven R.
  • Atmospheric Measurement Techniques, Vol. 9, Issue 9
  • DOI: 10.5194/amt-9-4633-2016

Constraints on methane emissions in North America from future geostationary remote-sensing measurements
journal, January 2016

  • Bousserez, Nicolas; Henze, Daven K.; Rooney, Brigitte
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 10
  • DOI: 10.5194/acp-16-6175-2016

Inverse modelling of CH 4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY
journal, January 2015

  • Alexe, M.; Bergamaschi, P.; Segers, A.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-113-2015

Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements
journal, January 2013

  • Fraser, A.; Palmer, P. I.; Feng, L.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 11
  • DOI: 10.5194/acp-13-5697-2013

Methane Leaks from North American Natural Gas Systems
journal, February 2014


Quantifying atmospheric methane emissions from oil and natural gas production in the Bakken shale region of North Dakota: CH
journal, May 2016

  • Peischl, J.; Karion, A.; Sweeney, C.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 10
  • DOI: 10.1002/2015JD024631

Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data
journal, January 2015

  • Turner, A. J.; Jacob, D. J.; Wecht, K. J.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 12
  • DOI: 10.5194/acp-15-7049-2015

Satellite-derived methane hotspot emission estimates using a fast data-driven method
journal, January 2017

  • Buchwitz, Michael; Schneising, Oliver; Reuter, Maximilian
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 9
  • DOI: 10.5194/acp-17-5751-2017

A remote sensing technique for global monitoring of power plant CO 2 emissions from space and related applications
journal, January 2010

  • Bovensmann, H.; Buchwitz, M.; Burrows, J. P.
  • Atmospheric Measurement Techniques, Vol. 3, Issue 4
  • DOI: 10.5194/amt-3-781-2010

Simulated retrievals for the remote sensing of CO 2 , CH 4 , CO, and H 2 O from geostationary orbit
journal, January 2015

  • Xi, X.; Natraj, V.; Shia, R. L.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 11
  • DOI: 10.5194/amt-8-4817-2015

Comparison of CH 4 inversions based on 15 months of GOSAT and SCIAMACHY observations : INVERSE MODELING OF SATELLITE RETRIEVED
journal, October 2013

  • Monteil, Guillaume; Houweling, Sander; Butz, André
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 20
  • DOI: 10.1002/2013JD019760

Constraining regional greenhouse gas emissions using geostationary concentration measurements: a theoretical study
journal, January 2014

  • Rayner, P. J.; Utembe, S. R.; Crowell, S.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 10
  • DOI: 10.5194/amt-7-3285-2014

Network design for quantifying urban CO 2 emissions: assessing trade-offs between precision and network density
journal, January 2016

  • Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 21
  • DOI: 10.5194/acp-16-13465-2016

Toward a better understanding and quantification of methane emissions from shale gas development
journal, April 2014

  • Caulton, D. R.; Shepson, P. B.; Santoro, R. L.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 17
  • DOI: 10.1073/pnas.1316546111

Four corners: The largest US methane anomaly viewed from space: Four Corners: largest US methane anomaly
journal, October 2014

  • Kort, Eric A.; Frankenberg, Christian; Costigan, Keeley R.
  • Geophysical Research Letters, Vol. 41, Issue 19
  • DOI: 10.1002/2014GL061503

Reconciling divergent estimates of oil and gas methane emissions
journal, December 2015

  • Zavala-Araiza, Daniel; Lyon, David R.; Alvarez, Ramón A.
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1522126112

Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT
journal, April 2018

  • Hu, Haili; Landgraf, Jochen; Detmers, Rob
  • Geophysical Research Letters, Vol. 45, Issue 8
  • DOI: 10.1002/2018GL077259

Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space
journal, January 2016

  • Kuze, Akihiko; Suto, Hiroshi; Shiomi, Kei
  • Atmospheric Measurement Techniques, Vol. 9, Issue 6
  • DOI: 10.5194/amt-9-2445-2016

Three decades of global methane sources and sinks
journal, September 2013

  • Kirschke, Stefanie; Bousquet, Philippe; Ciais, Philippe
  • Nature Geoscience, Vol. 6, Issue 10
  • DOI: 10.1038/ngeo1955

Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl
journal, April 2017

  • Turner, Alexander J.; Frankenberg, Christian; Wennberg, Paul O.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 21
  • DOI: 10.1073/pnas.1616020114

Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions: CH4 emissions from shale gas production
journal, March 2015

  • Peischl, J.; Ryerson, T. B.; Aikin, K. C.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 5
  • DOI: 10.1002/2014JD022697

Global inverse modeling of CH 4 sources and sinks: an overview of methods
journal, January 2017

  • Houweling, Sander; Bergamaschi, Peter; Chevallier, Frederic
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 1
  • DOI: 10.5194/acp-17-235-2017

Inverse modeling of global and regional CH 4 emissions using SCIAMACHY satellite retrievals
journal, January 2009

  • Bergamaschi, Peter; Frankenberg, Christian; Meirink, Jan Fokke
  • Journal of Geophysical Research, Vol. 114, Issue D22
  • DOI: 10.1029/2009JD012287

Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region
journal, June 2015

  • Lyon, David R.; Zavala-Araiza, Daniel; Alvarez, Ramón A.
  • Environmental Science & Technology, Vol. 49, Issue 13
  • DOI: 10.1021/es506359c

2010–2016 methane trends over Canada, the United States, and Mexico observed by the GOSAT satellite: contributions from different source sectors
journal, January 2018

  • Sheng, Jian-Xiong; Jacob, Daniel J.; Turner, Alexander J.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 16
  • DOI: 10.5194/acp-18-12257-2018

Mapping of North American methane emissions with high spatial resolution by inversion of SCIAMACHY satellite data: NORTH AMERICA METHANE EMISSION INVERSION
journal, June 2014

  • Wecht, Kevin J.; Jacob, Daniel J.; Frankenberg, Christian
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 12
  • DOI: 10.1002/2014JD021551

High-resolution inversion of methane emissions in the Southeast US using SEAC 4 RS aircraft observations of atmospheric methane: anthropogenic and wetland sources
journal, January 2018

  • Sheng, Jian-Xiong; Jacob, Daniel J.; Turner, Alexander J.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 9
  • DOI: 10.5194/acp-18-6483-2018

Atmospheric CH 4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements : CH
journal, July 2013

  • Bergamaschi, P.; Houweling, S.; Segers, A.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 13
  • DOI: 10.1002/jgrd.50480

Balancing aggregation and smoothing errors in inverse models
journal, January 2015


Satellite observations of atmospheric methane and their value for quantifying methane emissions
journal, January 2016

  • Jacob, Daniel J.; Turner, Alexander J.; Maasakkers, Joannes D.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 22
  • DOI: 10.5194/acp-16-14371-2016

Methane emissions estimate from airborne measurements over a western United States natural gas field: CH
journal, August 2013

  • Karion, Anna; Sweeney, Colm; Pétron, Gabrielle
  • Geophysical Research Letters, Vol. 40, Issue 16
  • DOI: 10.1002/grl.50811

Performance of a geostationary mission, geoCARB, to measure CO 2 , CH 4 and CO column-averaged concentrations
journal, January 2014

  • Polonsky, I. N.; O'Brien, D. M.; Kumer, J. B.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 4
  • DOI: 10.5194/amt-7-959-2014

The ACOS CO 2 retrieval algorithm – Part 1: Description and validation against synthetic observations
journal, January 2012

  • O'Dell, C. W.; Connor, B.; Bösch, H.
  • Atmospheric Measurement Techniques, Vol. 5, Issue 1
  • DOI: 10.5194/amt-5-99-2012

Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region
journal, August 2016

  • Frankenberg, Christian; Thorpe, Andrew K.; Thompson, David R.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 35
  • DOI: 10.1073/pnas.1605617113

Gridded National Inventory of U.S. Methane Emissions
journal, November 2016

  • Maasakkers, Joannes D.; Jacob, Daniel J.; Sulprizio, Melissa P.
  • Environmental Science & Technology, Vol. 50, Issue 23
  • DOI: 10.1021/acs.est.6b02878

Inverse Methods for Atmospheric Sounding: Theory and Practice
book, July 2000

  • Rodgers, Clive D.
  • Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2
  • DOI: 10.1142/3171

Works referencing / citing this record:

Interpreting contemporary trends in atmospheric methane
journal, February 2019

  • Turner, Alexander J.; Frankenberg, Christian; Kort, Eric A.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 8
  • DOI: 10.1073/pnas.1814297116

Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space
journal, January 2019

  • Cusworth, Daniel H.; Jacob, Daniel J.; Varon, Daniel J.
  • Atmospheric Measurement Techniques, Vol. 12, Issue 10
  • DOI: 10.5194/amt-12-5655-2019