DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries

Abstract

Large-scale electric energy storage is fundamental to the use of renewable energy. Recently, research and development efforts on room-temperature sodium-ion batteries (NIBs) have been revitalized, as NIBs are considered promising, low-cost alternatives to the current Li-ion battery technology for large-scale applications. Herein, we introduce a novel layered oxide cathode material, Na0.78Ni0.23Mn0.69O2. This new compound provides a high reversible capacity of 138 mAh g-1 and an average potential of 3.25 V vs Na+/Na with a single smooth voltage profile. Its remarkable rate and cycling performances are attributed to the elimination of the P2-O2 phase transition upon cycling to 4.5 V. The first charge process yields an abnormally excess capacity, which has yet to be observed in other P2 layered oxides. Metal K-edge XANES results show that the major charge compensation at the metal site during Na-ion deintercalation is achieved via the oxidation of nickel (Ni2+) ions, whereas, to a large extent, manganese (Mn) ions remain in their Mn4+ state. Interestingly, electron energy loss spectroscopy (EELS) and soft X-ray absorption spectroscopy (sXAS) results reveal differences in electronic structures in the bulk and at the surface of electrochemically cycled particles. At the surface, transition metal ions (TM ions) are in a lower valencemore » state than in the bulk, and the O K-edge prepeak disappears. On the basis of previous reports on related Li-excess LIB cathodes, it is proposed that part of the charge compensation mechanism during the first cycle takes place at the lattice oxygen site, resulting in a surface to bulk transition metal gradient. We believe that by optimizing and controlling oxygen activity, Na layered oxide materials with higher capacities can be designed.« less

Authors:
 [1];  [1];  [2];  [3];  [1]; ORCiD logo [4];  [3]; ORCiD logo [1]
  1. Univ. of California, San Diego, CA (United States). Dept. of NanoEngineering
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Iowa State Univ., Ames, IA (United States)
  3. Univ. of Cambridge (United Kingdom)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1532243
Grant/Contract Number:  
AC02-05CH11231; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 139; Journal Issue: 13; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Ma, Chuze, Alvarado, Judith, Xu, Jing, Clément, Raphaële J., Kodur, Moses, Tong, Wei, Grey, Clare P., and Meng, Ying Shirley. Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries. United States: N. p., 2017. Web. doi:10.1021/jacs.7b00164.
Ma, Chuze, Alvarado, Judith, Xu, Jing, Clément, Raphaële J., Kodur, Moses, Tong, Wei, Grey, Clare P., & Meng, Ying Shirley. Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries. United States. https://doi.org/10.1021/jacs.7b00164
Ma, Chuze, Alvarado, Judith, Xu, Jing, Clément, Raphaële J., Kodur, Moses, Tong, Wei, Grey, Clare P., and Meng, Ying Shirley. Wed . "Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries". United States. https://doi.org/10.1021/jacs.7b00164. https://www.osti.gov/servlets/purl/1532243.
@article{osti_1532243,
title = {Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries},
author = {Ma, Chuze and Alvarado, Judith and Xu, Jing and Clément, Raphaële J. and Kodur, Moses and Tong, Wei and Grey, Clare P. and Meng, Ying Shirley},
abstractNote = {Large-scale electric energy storage is fundamental to the use of renewable energy. Recently, research and development efforts on room-temperature sodium-ion batteries (NIBs) have been revitalized, as NIBs are considered promising, low-cost alternatives to the current Li-ion battery technology for large-scale applications. Herein, we introduce a novel layered oxide cathode material, Na0.78Ni0.23Mn0.69O2. This new compound provides a high reversible capacity of 138 mAh g-1 and an average potential of 3.25 V vs Na+/Na with a single smooth voltage profile. Its remarkable rate and cycling performances are attributed to the elimination of the P2-O2 phase transition upon cycling to 4.5 V. The first charge process yields an abnormally excess capacity, which has yet to be observed in other P2 layered oxides. Metal K-edge XANES results show that the major charge compensation at the metal site during Na-ion deintercalation is achieved via the oxidation of nickel (Ni2+) ions, whereas, to a large extent, manganese (Mn) ions remain in their Mn4+ state. Interestingly, electron energy loss spectroscopy (EELS) and soft X-ray absorption spectroscopy (sXAS) results reveal differences in electronic structures in the bulk and at the surface of electrochemically cycled particles. At the surface, transition metal ions (TM ions) are in a lower valence state than in the bulk, and the O K-edge prepeak disappears. On the basis of previous reports on related Li-excess LIB cathodes, it is proposed that part of the charge compensation mechanism during the first cycle takes place at the lattice oxygen site, resulting in a surface to bulk transition metal gradient. We believe that by optimizing and controlling oxygen activity, Na layered oxide materials with higher capacities can be designed.},
doi = {10.1021/jacs.7b00164},
journal = {Journal of the American Chemical Society},
number = 13,
volume = 139,
place = {United States},
year = {Wed Mar 22 00:00:00 EDT 2017},
month = {Wed Mar 22 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 303 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries
journal, January 2015

  • Han, Man Huon; Gonzalo, Elena; Singh, Gurpreet
  • Energy & Environmental Science, Vol. 8, Issue 1
  • DOI: 10.1039/C4EE03192J

A study of the Na x TiO2 system by electrochemical deintercalation
journal, January 1983

  • Maazaz, A.; Delmas, C.; Hagenmuller, P.
  • Journal of Inclusion Phenomena, Vol. 1, Issue 1
  • DOI: 10.1007/BF00658014

Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2
journal, March 2010


In Situ X-Ray Diffraction Study of P2-Na[sub 2/3][Ni[sub 1/3]Mn[sub 2/3]]O[sub 2]
journal, January 2001

  • Lu, Zhonghua; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 148, Issue 11
  • DOI: 10.1149/1.1407247

The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201410376

NaxVO2 as possible electrode for Na-ion batteries
journal, September 2011


Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1)
journal, February 1971

  • Parant, Jean-Paul; Olazcuaga, Roger; Devalette, Michel
  • Journal of Solid State Chemistry, Vol. 3, Issue 1
  • DOI: 10.1016/0022-4596(71)90001-6

Electronic and electrochemical properties of nickel bronze, NaxNiO2
journal, April 1990


Development of High Capacity Cathode Material for Sodium Ion Batteries Na 0.95 Li 0.15 (Ni 0.15 Mn 0.55 Co 0.1 )O 2
journal, January 2013

  • Kataoka, Riki; Mukai, Takashi; Yoshizawa, Akihiro
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.125306jes

P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery
journal, January 2014


Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi 1 / 3 Mn 1 / 3 Co 1 / 3 O 2
journal, April 2012

  • Sathiya, M.; Hemalatha, K.; Ramesha, K.
  • Chemistry of Materials, Vol. 24, Issue 10
  • DOI: 10.1021/cm300466b

β-NaMnO 2 : A High-Performance Cathode for Sodium-Ion Batteries
journal, November 2014

  • Billaud, Juliette; Clément, Raphaële J.; Armstrong, A. Robert
  • Journal of the American Chemical Society, Vol. 136, Issue 49
  • DOI: 10.1021/ja509704t

A preparation and polymorphic relations of sodium iron oxide (NaFeO2)
journal, August 1980


Structural classification and properties of the layered oxides
journal, January 1980


Study on the Reversible Electrode Reaction of Na 1– x Ni 0.5 Mn 0.5 O 2 for a Rechargeable Sodium-Ion Battery
journal, May 2012

  • Komaba, Shinichi; Yabuuchi, Naoaki; Nakayama, Tetsuri
  • Inorganic Chemistry, Vol. 51, Issue 11
  • DOI: 10.1021/ic300357d

Layered oxides as positive electrode materials for Na-ion batteries
journal, May 2014

  • Kubota, Kei; Yabuuchi, Naoaki; Yoshida, Hiroaki
  • MRS Bulletin, Vol. 39, Issue 5
  • DOI: 10.1557/mrs.2014.85

Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries
journal, August 2014


An advanced cathode for Na-ion batteries with high rate and excellent structural stability
journal, January 2013

  • Lee, Dae Hoe; Xu, Jing; Meng, Ying Shirley
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 9
  • DOI: 10.1039/c2cp44467d

Structure of the high voltage phase of layered P2-Na 2/3−z [Mn 1/2 Fe 1/2 ]O 2 and the positive effect of Ni substitution on its stability
journal, January 2015

  • Talaie, Elahe; Duffort, Victor; Smith, Hillary L.
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE01365H

Enabling Sodium Batteries Using Lithium-Substituted Sodium Layered Transition Metal Oxide Cathodes
journal, February 2011

  • Kim, Donghan; Kang, Sun-Ho; Slater, Michael
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 333-336
  • DOI: 10.1002/aenm.201000061

Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries
journal, August 2015


Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries
journal, January 2016

  • Hy, Sunny; Liu, Haodong; Zhang, Minghao
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03573B

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1
journal, January 2011

  • Ohzuku, Tsutomu; Nagayama, Masatoshi; Tsuji, Kyoji
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm04325g

Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Improving Energy Density and Structural Stability of Manganese Oxide Cathodes for Na-Ion Batteries by Structural Lithium Substitution
journal, December 2016


New O2/P2-type Li-Excess Layered Manganese Oxides as Promising Multi-Functional Electrode Materials for Rechargeable Li/Na Batteries
journal, May 2014

  • Yabuuchi, Naoaki; Hara, Ryo; Kajiyama, Masataka
  • Advanced Energy Materials, Vol. 4, Issue 13
  • DOI: 10.1002/aenm.201301453

A new electrode material for rechargeable sodium batteries: P2-type Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 with anomalously high reversible capacity
journal, January 2014

  • Yabuuchi, Naoaki; Hara, Ryo; Kubota, Kei
  • J. Mater. Chem. A, Vol. 2, Issue 40
  • DOI: 10.1039/C4TA04351K

Redox Potential Paradox in Na x MO 2 for Sodium-Ion Battery Cathodes
journal, February 2016


Anionic redox chemistry in Na-rich Na 2 Ru 1−y Sn y O 3 positive electrode material for Na-ion batteries
journal, April 2015


Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
journal, April 2016

  • Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11397

The Role of Metal Site Vacancies in Promoting Li–Mn–Ni–O Layered Solid Solutions
journal, June 2013

  • McCalla, E.; Rowe, A. W.; Camardese, J.
  • Chemistry of Materials, Vol. 25, Issue 13
  • DOI: 10.1021/cm401461m

Analysis of Three-Electrode Setups for AC-Impedance Measurements on Lithium-Ion Cells by FEM simulations
journal, January 2011

  • Ender, Moses; Weber, André; Ellen, Ivers-Tiffée
  • Journal of The Electrochemical Society, Vol. 159, Issue 2
  • DOI: 10.1149/2.100202jes

Effect of Ni/Mn Ordering on Elementary Polarizations of LiNi 0.5 Mn 1.5 O 4 Spinel and Its Nanostructured Electrode
journal, January 2013

  • Cho, Hyung-Man; Meng, Ying Shirley
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.059309jes

Electrochemical kinetics of the 0.5Li2MnO3·0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries
journal, January 2012

  • Yu, Haijun; Wang, Yarong; Asakura, Daisuke
  • RSC Advances, Vol. 2, Issue 23
  • DOI: 10.1039/c2ra20772a

Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study
journal, January 2011

  • Xu, Bo; Fell, Christopher R.; Chi, Miaofang
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c1ee01131f

Intercalation of Water in P2, T2 and O2 Structure A z [Co x Ni 1/3- x Mn 2/3 ]O 2
journal, April 2001

  • Lu, Zhonghua; Dahn, J. R.
  • Chemistry of Materials, Vol. 13, Issue 4
  • DOI: 10.1021/cm000721x

Electrochemical intercalation and deintercalation of NaxMnO2 bronzes
journal, May 1985


Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

High-Energy Cathode Materials (Li 2 MnO 3 –LiMO 2 ) for Lithium-Ion Batteries
journal, March 2013

  • Yu, Haijun; Zhou, Haoshen
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 8
  • DOI: 10.1021/jz400032v

EELS analysis of cation valence states and oxygen vacancies in magnetic oxides
journal, October 2000


Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides
journal, January 2014

  • Qian, Danna; Xu, Bo; Chi, Miaofang
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 28
  • DOI: 10.1039/C4CP01799D

Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2
journal, January 2013

  • Carroll, Kyler J.; Qian, Danna; Fell, Chris
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 26
  • DOI: 10.1039/c3cp51927a

Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2
journal, June 2006

  • Armstrong, A. Robert; Holzapfel, Michael; Novák, Petr
  • Journal of the American Chemical Society, Vol. 128, Issue 26
  • DOI: 10.1021/ja062027+

Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries
journal, January 2014

  • Lin, Feng; Nordlund, Dennis; Markus, Isaac M.
  • Energy & Environmental Science, Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01400F

Investigation of the Charge Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Li 1 - x Co 1/3 Ni 1/3 Mn 1/3 O 2 Electrode System by Combination of Soft and Hard X-ray Absorption Spectroscopy
journal, December 2005

  • Yoon, Won-Sub; Balasubramanian, Mahalingam; Chung, Kyung Yoon
  • Journal of the American Chemical Society, Vol. 127, Issue 49
  • DOI: 10.1021/ja0530568

Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy
journal, October 2013

  • Liu, Xiaosong; Wang, Dongdong; Liu, Gao
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3568

Splitting of Ni 3 d states at the surface of NiO nanostructures
journal, November 2006


Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi 0.5 Mn 1.5 O 4 Electrodes
journal, November 2015

  • Qiao, Ruimin; Wray, L. Andrew; Kim, Jung-Hyun
  • The Journal of Physical Chemistry C, Vol. 119, Issue 49
  • DOI: 10.1021/acs.jpcc.5b07479

Electrochemical and Structural Study of the Layered, “Li-Excess” Lithium-Ion Battery Electrode Material Li[Li 1/9 Ni 1/3 Mn 5/9 ]O 2
journal, July 2009

  • Jiang, Meng; Key, Baris; Meng, Ying S.
  • Chemistry of Materials, Vol. 21, Issue 13
  • DOI: 10.1021/cm900279u

Soft X-ray Absorption Spectroscopic and Raman Studies on Li 1.2 Ni 0.2 Mn 0.6 O 2 for Lithium-Ion Batteries
journal, November 2012

  • Hy, Sunny; Su, Wei-Nien; Chen, Jing-Ming
  • The Journal of Physical Chemistry C, Vol. 116, Issue 48
  • DOI: 10.1021/jp309313m

Oxygen 1 s x-ray-absorption edges of transition-metal oxides
journal, September 1989


Soft X-Ray Irradiation Effects of Li2O2, Li2CO3 and Li2O Revealed by Absorption Spectroscopy
journal, November 2012


P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
journal, April 2012

  • Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3309

Works referencing / citing this record:

The Structural Stability of P2-Layered Na-Based Electrodes during Anionic Redox
journal, February 2020


Rational Design of a P2-Type Spherical Layered Oxide Cathode for High-Performance Sodium-Ion Batteries
journal, December 2019


Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides
journal, December 2017


A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage
journal, November 2018