DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inertially confined fusion plasmas dominated by alpha-particle self-heating [Alpha-particle self-heating dominated inertially confined fusion plasmas]

Abstract

Alpha-particle self-heating, the process of deuterium–tritium fusion reaction products depositing their kinetic energy locally within a fusion reaction region and thus increasing the temperature in the reacting region, is essential for achieving ignition in a fusion system. Here, we report new inertial confinement fusion experiments where the alpha-particle heating of the plasma is dominant with the fusion yield produced exceeding the fusion yield from the work done on the fuel (pressure times volume change) by a factor of two or more. These experiments have achieved the highest yield (26 ± 0.5 kJ) and stagnation pressures ( ≍ 220 ± 40 Gbar) of any facility-based inertial confinement fusion experiments, although they are still short of the pressures required for ignition on the National Ignition Facility (~300–400 Gbar). Finally, these experiments put us in a new part of parameter space that has not been extensively studied so far because it lies between the no-alpha-particle-deposition regime and ignition.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1] more »;  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [1];  [1];  [1];  [1];  [3];  [2];  [4];  [3];  [3];  [1];  [1];  [1];  [5];  [1];  [5];  [1];  [2];  [1];  [1];  [3];  [1];  [1];  [1]; ;  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [3];  [1];  [1];  [3];  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. General Atomics, La Jolla, CA (United States)
  5. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1524708
Report Number(s):
LLNL-JRNL-668412
Journal ID: ISSN 1745-2473; 790148
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Nature Physics
Additional Journal Information:
Journal Volume: 12; Journal Issue: 8; Journal ID: ISSN 1745-2473
Publisher:
Nature Publishing Group (NPG)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Hurricane, O.  A., Callahan, D.  A., Casey, D.  T., Dewald, E.  L., Dittrich, T.  R., Döppner, T., Haan, S., Hinkel, D.  E., Berzak Hopkins, L.  F., Jones, O., Kritcher, A.  L., Le Pape, S., Ma, T., MacPhee, A.  G., Milovich, J.  L., Moody, J., Pak, A., Park, H. -S., Patel, P.  K., Ralph, J.  E., Robey, H.  F., Ross, J.  S., Salmonson, J.  D., Spears, B.  K., Springer, P.  T., Tommasini, R., Albert, F., Benedetti, L.  R., Bionta, R., Bond, E., Bradley, D.  K., Caggiano, J., Celliers, P.  M., Cerjan, C., Church, J.  A., Dylla-Spears, R., Edgell, D., Edwards, M.  J., Fittinghoff, D., Barrios Garcia, M.  A., Hamza, A., Hatarik, R., Herrmann, H., Hohenberger, M., Hoover, D., Kline, J.  L., Kyrala, G., Kozioziemski, B., Grim, G., Field, J.  E., Frenje, J., Izumi, N., Gatu Johnson, M., Khan, S.  F., Knauer, J., Kohut, T., Landen, O., Merrill, F., Michel, P., Moore, A., Nagel, S.  R., Nikroo, A., Parham, T., Rygg, R.  R., Sayre, D., Schneider, M., Shaughnessy, D., Strozzi, D., Town, R.  P.  J., Turnbull, D., Volegov, P., Wan, A., Widmann, K., Wilde, C., and Yeamans, C. Inertially confined fusion plasmas dominated by alpha-particle self-heating [Alpha-particle self-heating dominated inertially confined fusion plasmas]. United States: N. p., 2016. Web. doi:10.1038/NPHYS3720.
Hurricane, O.  A., Callahan, D.  A., Casey, D.  T., Dewald, E.  L., Dittrich, T.  R., Döppner, T., Haan, S., Hinkel, D.  E., Berzak Hopkins, L.  F., Jones, O., Kritcher, A.  L., Le Pape, S., Ma, T., MacPhee, A.  G., Milovich, J.  L., Moody, J., Pak, A., Park, H. -S., Patel, P.  K., Ralph, J.  E., Robey, H.  F., Ross, J.  S., Salmonson, J.  D., Spears, B.  K., Springer, P.  T., Tommasini, R., Albert, F., Benedetti, L.  R., Bionta, R., Bond, E., Bradley, D.  K., Caggiano, J., Celliers, P.  M., Cerjan, C., Church, J.  A., Dylla-Spears, R., Edgell, D., Edwards, M.  J., Fittinghoff, D., Barrios Garcia, M.  A., Hamza, A., Hatarik, R., Herrmann, H., Hohenberger, M., Hoover, D., Kline, J.  L., Kyrala, G., Kozioziemski, B., Grim, G., Field, J.  E., Frenje, J., Izumi, N., Gatu Johnson, M., Khan, S.  F., Knauer, J., Kohut, T., Landen, O., Merrill, F., Michel, P., Moore, A., Nagel, S.  R., Nikroo, A., Parham, T., Rygg, R.  R., Sayre, D., Schneider, M., Shaughnessy, D., Strozzi, D., Town, R.  P.  J., Turnbull, D., Volegov, P., Wan, A., Widmann, K., Wilde, C., & Yeamans, C. Inertially confined fusion plasmas dominated by alpha-particle self-heating [Alpha-particle self-heating dominated inertially confined fusion plasmas]. United States. https://doi.org/10.1038/NPHYS3720
Hurricane, O.  A., Callahan, D.  A., Casey, D.  T., Dewald, E.  L., Dittrich, T.  R., Döppner, T., Haan, S., Hinkel, D.  E., Berzak Hopkins, L.  F., Jones, O., Kritcher, A.  L., Le Pape, S., Ma, T., MacPhee, A.  G., Milovich, J.  L., Moody, J., Pak, A., Park, H. -S., Patel, P.  K., Ralph, J.  E., Robey, H.  F., Ross, J.  S., Salmonson, J.  D., Spears, B.  K., Springer, P.  T., Tommasini, R., Albert, F., Benedetti, L.  R., Bionta, R., Bond, E., Bradley, D.  K., Caggiano, J., Celliers, P.  M., Cerjan, C., Church, J.  A., Dylla-Spears, R., Edgell, D., Edwards, M.  J., Fittinghoff, D., Barrios Garcia, M.  A., Hamza, A., Hatarik, R., Herrmann, H., Hohenberger, M., Hoover, D., Kline, J.  L., Kyrala, G., Kozioziemski, B., Grim, G., Field, J.  E., Frenje, J., Izumi, N., Gatu Johnson, M., Khan, S.  F., Knauer, J., Kohut, T., Landen, O., Merrill, F., Michel, P., Moore, A., Nagel, S.  R., Nikroo, A., Parham, T., Rygg, R.  R., Sayre, D., Schneider, M., Shaughnessy, D., Strozzi, D., Town, R.  P.  J., Turnbull, D., Volegov, P., Wan, A., Widmann, K., Wilde, C., and Yeamans, C. Mon . "Inertially confined fusion plasmas dominated by alpha-particle self-heating [Alpha-particle self-heating dominated inertially confined fusion plasmas]". United States. https://doi.org/10.1038/NPHYS3720. https://www.osti.gov/servlets/purl/1524708.
@article{osti_1524708,
title = {Inertially confined fusion plasmas dominated by alpha-particle self-heating [Alpha-particle self-heating dominated inertially confined fusion plasmas]},
author = {Hurricane, O.  A. and Callahan, D.  A. and Casey, D.  T. and Dewald, E.  L. and Dittrich, T.  R. and Döppner, T. and Haan, S. and Hinkel, D.  E. and Berzak Hopkins, L.  F. and Jones, O. and Kritcher, A.  L. and Le Pape, S. and Ma, T. and MacPhee, A.  G. and Milovich, J.  L. and Moody, J. and Pak, A. and Park, H. -S. and Patel, P.  K. and Ralph, J.  E. and Robey, H.  F. and Ross, J.  S. and Salmonson, J.  D. and Spears, B.  K. and Springer, P.  T. and Tommasini, R. and Albert, F. and Benedetti, L.  R. and Bionta, R. and Bond, E. and Bradley, D.  K. and Caggiano, J. and Celliers, P.  M. and Cerjan, C. and Church, J.  A. and Dylla-Spears, R. and Edgell, D. and Edwards, M.  J. and Fittinghoff, D. and Barrios Garcia, M.  A. and Hamza, A. and Hatarik, R. and Herrmann, H. and Hohenberger, M. and Hoover, D. and Kline, J.  L. and Kyrala, G. and Kozioziemski, B. and Grim, G. and Field, J.  E. and Frenje, J. and Izumi, N. and Gatu Johnson, M. and Khan, S.  F. and Knauer, J. and Kohut, T. and Landen, O. and Merrill, F. and Michel, P. and Moore, A. and Nagel, S.  R. and Nikroo, A. and Parham, T. and Rygg, R.  R. and Sayre, D. and Schneider, M. and Shaughnessy, D. and Strozzi, D. and Town, R.  P.  J. and Turnbull, D. and Volegov, P. and Wan, A. and Widmann, K. and Wilde, C. and Yeamans, C.},
abstractNote = {Alpha-particle self-heating, the process of deuterium–tritium fusion reaction products depositing their kinetic energy locally within a fusion reaction region and thus increasing the temperature in the reacting region, is essential for achieving ignition in a fusion system. Here, we report new inertial confinement fusion experiments where the alpha-particle heating of the plasma is dominant with the fusion yield produced exceeding the fusion yield from the work done on the fuel (pressure times volume change) by a factor of two or more. These experiments have achieved the highest yield (26 ± 0.5 kJ) and stagnation pressures ( ≍ 220 ± 40 Gbar) of any facility-based inertial confinement fusion experiments, although they are still short of the pressures required for ignition on the National Ignition Facility (~300–400 Gbar). Finally, these experiments put us in a new part of parameter space that has not been extensively studied so far because it lies between the no-alpha-particle-deposition regime and ignition.},
doi = {10.1038/NPHYS3720},
journal = {Nature Physics},
number = 8,
volume = 12,
place = {United States},
year = {Mon Apr 11 00:00:00 EDT 2016},
month = {Mon Apr 11 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 119 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Table of input and derived yield amplification metrics. Column 2 is laser energy absorbed (incident-backscatter) by the hohlraum (typically 10-15% of this is absorbed by the imploding capsule). The ablator mass (Column 3), mabl, is generally reduced to 5-10% of this value at peak implosion velocity. Column 4more » is the deuterium-tritium fuel mass loaded into the capsule. Column 5 shows the α-heating yield increase determined from the dynamic model (dm) while column 6 shows the same quantity calculated using the method of references.« less

Save / Share:

Works referenced in this record:

Progress towards ignition on the National Ignition Facility
journal, July 2013

  • Edwards, M. J.; Patel, P. K.; Lindl, J. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816115

Inertial confinement fusion: Ignition of isobarically compressed D-T targets
journal, March 1984


Escape of α Particles from a Laser-Pulse-Initiated Thermonuclear Reaction
journal, April 1973


Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement
journal, May 2010

  • Betti, R.; Chang, P. Y.; Spears, B. K.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3380857

Neutron activation diagnostics at the National Ignition Facility (invited)
journal, October 2012

  • Bleuel, D. L.; Yeamans, C. B.; Bernstein, L. A.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4733741

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Development of nuclear diagnostics for the National Ignition Facility (invited)
journal, October 2006

  • Glebov, V. Yu.; Meyerhofer, D. D.; Sangster, T. C.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2236281

Deuterium-Tritium Fuel Layer Formation for the National Ignition Facility
journal, January 2011

  • Kozioziemski, B. J.; Mapoles, E. R.; Sater, J. D.
  • Fusion Science and Technology, Vol. 59, Issue 1
  • DOI: 10.13182/FST10-3697

Neutron spectrometry—An essential tool for diagnosing implosions at the National Ignition Facility (invited)
journal, October 2012

  • Johnson, M. Gatu; Frenje, J. A.; Casey, D. T.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4728095

Enhanced NIF neutron activation diagnostics
journal, October 2012

  • Yeamans, C. B.; Bleuel, D. L.; Bernstein, L. A.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4739230

Deceleration phase of inertial confinement fusion implosions
journal, May 2002

  • Betti, R.; Anderson, K.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459458

The high-foot implosion campaign on the National Ignition Facility
journal, May 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4874330

Integrated diagnostic analysis of inertial confinement fusion capsule performance
journal, May 2013

  • Cerjan, Charles; Springer, Paul T.; Sepke, Scott M.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4802196

The Physics of Inertial Fusion
book, January 2004


Generalized Measurable Ignition Criterion for Inertial Confinement Fusion
journal, April 2010


A hardened gated x-ray imaging diagnostic for inertial confinement fusion experiments at the National Ignition Facility
journal, October 2010

  • Glenn, S.; Koch, J.; Bradley, D. K.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3478897

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Higher velocity, high-foot implosions on the National Ignition Facility lasera)
journal, May 2015

  • Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921144

Nuclear imaging of the fuel assembly in ignition experiments
journal, May 2013

  • Grim, G. P.; Guler, N.; Merrill, F. E.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4807291

Neutron source reconstruction from pinhole imaging at National Ignition Facility
journal, February 2014

  • Volegov, P.; Danly, C. R.; Fittinghoff, D. N.
  • Review of Scientific Instruments, Vol. 85, Issue 2
  • DOI: 10.1063/1.4865456

Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF
journal, October 2012

  • Ma, T.; Izumi, N.; Tommasini, R.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4733313

Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Kritcher, A. L.; Town, R.; Bradley, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4871718

The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra
journal, July 2014


Improved formulas for fusion cross-sections and thermal reactivities
journal, April 1992


Similarity solution of thermonuclear burn wave with electron and α-conductivities
journal, December 1976


Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility
journal, July 2015


Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums
journal, June 2015

  • Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.
  • Physics of Plasmas, Vol. 22, Issue 6
  • DOI: 10.1063/1.4921947

The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry
journal, March 2013


Transport Phenomena in a Completely Ionized Gas
journal, March 1953


The neutron imaging diagnostic at NIF (invited)
journal, October 2012

  • Merrill, F. E.; Bower, D.; Buckles, R.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4739242

High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility
journal, February 2014


Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
journal, February 2014


Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility
journal, May 2014

  • Town, R. P. J.; Bradley, D. K.; Kritcher, A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876609

Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility
journal, April 2015


Some Criteria for a Power Producing Thermonuclear Reactor
journal, January 1957


Fusion neutron energies and spectra
journal, July 1973


Improved formulas for fusion cross-sections and thermal reactivities
journal, December 1993


Works referencing / citing this record:

Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions
journal, March 2017

  • Wang, LiFeng; Ye, WenHua; He, XianTu
  • Science China Physics, Mechanics & Astronomy, Vol. 60, Issue 5
  • DOI: 10.1007/s11433-017-9016-x

P2 asymmetry of Au's M-band flux and its smoothing effect due to high-Z ablator dopants
journal, March 2017


Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter
journal, June 2017

  • Cayzac, W.; Frank, A.; Ortner, A.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15693

Inertial-confinement fusion with lasers
journal, May 2016

  • Betti, R.; Hurricane, O. A.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3736

Enhanced energy coupling for indirectly driven inertial confinement fusion
journal, October 2018


Tripled yield in direct-drive laser fusion through statistical modelling
journal, January 2019


Integrated modeling of cryogenic layered highfoot experiments at the NIF
journal, May 2016

  • Kritcher, A. L.; Hinkel, D. E.; Callahan, D. A.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4949351

Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility
journal, August 2016

  • Casey, D. T.; Volegov, P. L.; Merrill, F. E.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4960065

The role of hot spot mix in the low-foot and high-foot implosions on the NIF
journal, May 2017

  • Ma, T.; Patel, P. K.; Izumi, N.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983625

A comprehensive alpha-heating model for inertial confinement fusion
journal, January 2018

  • Christopherson, A. R.; Betti, R.; Bose, A.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.4991405

On the importance of minimizing “coast-time” in x-ray driven inertially confined fusion implosions
journal, September 2017

  • Hurricane, O. A.; Kritcher, A.; Callahan, D. A.
  • Physics of Plasmas, Vol. 24, Issue 9
  • DOI: 10.1063/1.4994856

The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility
journal, January 2018

  • Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.5010922

A plasma amplifier to combine multiple beams at NIF
journal, May 2018

  • Kirkwood, R. K.; Turnbull, D. P.; Chapman, T.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5016310

A near one-dimensional indirectly driven implosion at convergence ratio 30
journal, May 2018

  • MacLaren, S. A.; Masse, L. P.; Czajka, C. E.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5017976

Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators
journal, May 2018

  • Kritcher, A. L.; Clark, D.; Haan, S.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5018000

The high velocity, high adiabat, “Bigfoot” campaign and tests of indirect-drive implosion scaling
journal, May 2018

  • Casey, D. T.; Thomas, C. A.; Baker, K. L.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5019741

Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser
journal, May 2018

  • Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5020057

Particle-in-cell studies of fast-ion slowing-down rates in cool tenuous magnetized plasma
journal, April 2018

  • Evans, Eugene S.; Cohen, Samuel A.; Welch, Dale R.
  • Physics of Plasmas, Vol. 25, Issue 4
  • DOI: 10.1063/1.5022188

Synthetic nuclear diagnostics for inferring plasma properties of inertial confinement fusion implosions
journal, December 2018

  • Crilly, A. J.; Appelbe, B. D.; McGlinchey, K.
  • Physics of Plasmas, Vol. 25, Issue 12
  • DOI: 10.1063/1.5027462

Theory of alpha heating in inertial fusion: Alpha-heating metrics and the onset of the burning-plasma regime
journal, July 2018

  • Christopherson, A. R.; Betti, R.; Howard, J.
  • Physics of Plasmas, Vol. 25, Issue 7
  • DOI: 10.1063/1.5030337

Using multiple x-ray emission images of inertially confined implosions to identify spatial variations and estimate confinement volumes (invited)
journal, October 2018

  • Benedetti, Laura Robin; Bradley, D. K.; Khan, S. F.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5039381

Impact of imposed mode 2 laser drive asymmetry on inertial confinement fusion implosions
journal, January 2019

  • Gatu Johnson, M.; Appelbe, B. D.; Chittenden, J. P.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5066435

Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions
journal, January 2019

  • Haines, Brian M.; Olson, R. E.; Sweet, W.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5080262

A theoretical model for low-mode asymmetries in ICF implosions
journal, February 2019

  • Zhang, Cunbo; Yu, Chengxin; Yang, Chen
  • Physics of Plasmas, Vol. 26, Issue 2
  • DOI: 10.1063/1.5082586

Approaching a burning plasma on the NIF
journal, May 2019

  • Hurricane, O. A.; Springer, P. T.; Patel, P. K.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5087256

Laboratory measurements of geometrical effects in the x-ray emission of optically thick lines for ICF diagnostics
journal, June 2019

  • Pérez-Callejo, G.; Jarrott, L. C.; Liedahl, D. A.
  • Physics of Plasmas, Vol. 26, Issue 6
  • DOI: 10.1063/1.5096972

Quantum hydrodynamics for plasmas— Quo vadis ?
journal, September 2019

  • Bonitz, M.; Moldabekov, Zh. A.; Ramazanov, T. S.
  • Physics of Plasmas, Vol. 26, Issue 9
  • DOI: 10.1063/1.5097885

Implosion performance of subscale beryllium capsules on the NIF
journal, May 2019

  • Zylstra, A. B.; MacLaren, S.; Yi, S. A.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5098319

On alpha-particle transport in inertial fusion
journal, June 2019

  • Zylstra, A. B.; Hurricane, O. A.
  • Physics of Plasmas, Vol. 26, Issue 6
  • DOI: 10.1063/1.5101074

Effects of thermal conductivity of liquid layer in NIF wetted foam experiments
journal, September 2019

  • Dhakal, Tilak R.; Haines, Brian M.; Olson, Richard E.
  • Physics of Plasmas, Vol. 26, Issue 9
  • DOI: 10.1063/1.5112768

Three-dimensional simulations of turbulent mixing in spherical implosions
journal, November 2019

  • El Rafei, M.; Flaig, M.; Youngs, D. L.
  • Physics of Fluids, Vol. 31, Issue 11
  • DOI: 10.1063/1.5113640

Maintaining low-mode symmetry control with extended pulse shapes for lower-adiabat Bigfoot implosions on the National Ignition Facility
journal, November 2019

  • Hohenberger, M.; Casey, D. T.; Thomas, C. A.
  • Physics of Plasmas, Vol. 26, Issue 11
  • DOI: 10.1063/1.5121435

Indirect drive ignition at the National Ignition Facility
journal, October 2016


Ultrafast dynamics of strongly correlated fermions—nonequilibrium Green functions and selfenergy approximations
journal, December 2019

  • Schlünzen, N.; Hermanns, S.; Scharnke, M.
  • Journal of Physics: Condensed Matter, Vol. 32, Issue 10
  • DOI: 10.1088/1361-648x/ab2d32

Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility
journal, November 2018

  • Hurricane, O. A.; Callahan, D. A.; Springer, P. T.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aaed71

Preliminary experiments on hohlraum-driven double-shell implosion at the ShenGuang-III laser facility
journal, June 2018


Burn regimes in the hydrodynamic scaling of perturbed inertial confinement fusion hotspots
journal, June 2019


Dynamics of supernova bounce in laboratory
journal, March 2019


Ab initio Exchange-Correlation Free Energy of the Uniform Electron Gas at Warm Dense Matter Conditions
journal, September 2017


Development of the real-time neutron activation diagnostic system for NIF
conference, September 2017

  • Root, Jaben; Jedlovec, Donald R.; Edwards, Ellen R.
  • Target Diagnostics Physics and Engineering for Inertial Confinement Fusion VI
  • DOI: 10.1117/12.2274343

Laboratory measurements of geometrical effects in the X-ray emission of optically thick lines for ICF diagnostics
text, January 2019


Dynamics of supernova bounce in laboratory
text, January 2018


Burn regimes in the hydrodynamic scaling of perturbed inertial confinement fusion hotspots
text, January 2019


Figures / Tables found in this record:

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.