DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices

Abstract

Abstract Harnessing photoexcited “hot” carriers in metallic nanostructures could define a new phase of non-equilibrium optoelectronics for photodetection and photocatalysis. Surface plasmons are considered pivotal for enabling efficient operation of hot carrier devices. Clarifying the fundamental role of plasmon excitation is therefore critical for exploiting their full potential. Here, we measure the internal quantum efficiency in photoexcited gold (Au)–gallium nitride (GaN) Schottky diodes to elucidate and quantify the distinct roles of surface plasmon excitation, hot carrier transport, and carrier injection in device performance. We show that plasmon excitation does not influence the electronic processes occurring within the hot carrier device. Instead, the metal band structure and carrier transport processes dictate the observed hot carrier photocurrent distribution. The excellent agreement with parameter-free calculations indicates that photoexcited electrons generated in ultra-thin Au nanostructures impinge ballistically on the Au–GaN interface, suggesting the possibility for hot carrier collection without substantial energy losses via thermalization.

Authors:
; ; ; ; ; ; ; ; ORCiD logo
Publication Date:
Research Org.:
California Institute of Technology (CalTech), Pasadena, CA (United States); Lawrence Berkeley National Lab. (LBNL), CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1464991
Alternate Identifier(s):
OSTI ID: 1511489
Grant/Contract Number:  
SC0004993; AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Nature Communications
Additional Journal Information:
Journal Name: Nature Communications Journal Volume: 9 Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Tagliabue, Giulia, Jermyn, Adam S., Sundararaman, Ravishankar, Welch, Alex J., DuChene, Joseph S., Pala, Ragip, Davoyan, Artur R., Narang, Prineha, and Atwater, Harry A. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. United Kingdom: N. p., 2018. Web. doi:10.1038/s41467-018-05968-x.
Tagliabue, Giulia, Jermyn, Adam S., Sundararaman, Ravishankar, Welch, Alex J., DuChene, Joseph S., Pala, Ragip, Davoyan, Artur R., Narang, Prineha, & Atwater, Harry A. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. United Kingdom. https://doi.org/10.1038/s41467-018-05968-x
Tagliabue, Giulia, Jermyn, Adam S., Sundararaman, Ravishankar, Welch, Alex J., DuChene, Joseph S., Pala, Ragip, Davoyan, Artur R., Narang, Prineha, and Atwater, Harry A. Thu . "Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices". United Kingdom. https://doi.org/10.1038/s41467-018-05968-x.
@article{osti_1464991,
title = {Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices},
author = {Tagliabue, Giulia and Jermyn, Adam S. and Sundararaman, Ravishankar and Welch, Alex J. and DuChene, Joseph S. and Pala, Ragip and Davoyan, Artur R. and Narang, Prineha and Atwater, Harry A.},
abstractNote = {Abstract Harnessing photoexcited “hot” carriers in metallic nanostructures could define a new phase of non-equilibrium optoelectronics for photodetection and photocatalysis. Surface plasmons are considered pivotal for enabling efficient operation of hot carrier devices. Clarifying the fundamental role of plasmon excitation is therefore critical for exploiting their full potential. Here, we measure the internal quantum efficiency in photoexcited gold (Au)–gallium nitride (GaN) Schottky diodes to elucidate and quantify the distinct roles of surface plasmon excitation, hot carrier transport, and carrier injection in device performance. We show that plasmon excitation does not influence the electronic processes occurring within the hot carrier device. Instead, the metal band structure and carrier transport processes dictate the observed hot carrier photocurrent distribution. The excellent agreement with parameter-free calculations indicates that photoexcited electrons generated in ultra-thin Au nanostructures impinge ballistically on the Au–GaN interface, suggesting the possibility for hot carrier collection without substantial energy losses via thermalization.},
doi = {10.1038/s41467-018-05968-x},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United Kingdom},
year = {Thu Aug 23 00:00:00 EDT 2018},
month = {Thu Aug 23 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1038/s41467-018-05968-x

Citation Metrics:
Cited by: 123 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Plasmon-induced hot carrier science and technology
journal, January 2015

  • Brongersma, Mark L.; Halas, Naomi J.; Nordlander, Peter
  • Nature Nanotechnology, Vol. 10, Issue 1
  • DOI: 10.1038/nnano.2014.311

Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells
journal, July 2009

  • Chen, Z. H.; Tang, Y. B.; Liu, C. P.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 30
  • DOI: 10.1021/jp903153w

Distinguishing between plasmon-induced and photoexcited carriers in a device geometry
journal, July 2015

  • Zheng, Bob Y.; Zhao, Hangqi; Manjavacas, Alejandro
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8797

Quantification of Efficient Plasmonic Hot-Electron Injection in Gold Nanoparticle–TiO 2 Films
journal, September 2017


Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles
journal, February 2017


Hot Charge Carrier Transmission from Plasmonic Nanostructures
journal, May 2017


Plasmonics for improved photovoltaic devices
journal, February 2010

  • Atwater, Harry A.; Polman, Albert
  • Nature Materials, Vol. 9, Issue 3, p. 205-213
  • DOI: 10.1038/nmat2629

Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells
journal, May 2016

  • Zhang, Yu; Yam, ChiYung; Schatz, George C.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 10
  • DOI: 10.1021/acs.jpclett.6b00879

Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects
journal, January 2014

  • Uskov, Alexander V.; Protsenko, Igor E.; Ikhsanov, Renat S.
  • Nanoscale, Vol. 6, Issue 9
  • DOI: 10.1039/c3nr06679g

Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO 2 Nanostructures
journal, May 2015


Hot Hole Photoelectrochemistry on Au@SiO 2 @Au Nanoparticles
journal, April 2017

  • Schlather, Andrea E.; Manjavacas, Alejandro; Lauchner, Adam
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 9
  • DOI: 10.1021/acs.jpclett.7b00563

Hot Carrier Extraction with Plasmonic Broadband Absorbers
journal, March 2016


Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna
journal, February 2014

  • Chalabi, Hamidreza; Schoen, David; Brongersma, Mark L.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl4044373

Direct observation of charge separation on Au localized surface plasmons
journal, January 2013

  • Sá, Jacinto; Tagliabue, Giulia; Friedli, Peter
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee42731e

Harvesting the loss: surface plasmon-based hot electron photodetection
journal, November 2016


Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures
journal, May 2011

  • Christopher, Phillip; Xin, Hongliang; Linic, Suljo
  • Nature Chemistry, Vol. 3, Issue 6
  • DOI: 10.1038/nchem.1032

Theoretical predictions for hot-carrier generation from surface plasmon decay
journal, December 2014

  • Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6788

Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition
journal, August 2015


Optical Generation of Hot Plasmonic Carriers in Metal Nanocrystals: The Effects of Shape and Field Enhancement
journal, March 2014

  • Zhang, Hui; Govorov, Alexander O.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 14
  • DOI: 10.1021/jp500009k

Enhanced generation and anisotropic Coulomb scattering of hot electrons in an ultra-broadband plasmonic nanopatch metasurface
journal, October 2017


Embedding Plasmonic Nanostructure Diodes Enhances Hot Electron Emission
journal, March 2013

  • Knight, Mark W.; Wang, Yumin; Urban, Alexander S.
  • Nano Letters, Vol. 13, Issue 4
  • DOI: 10.1021/nl400196z

Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion
journal, January 2016

  • Narang, Prineha; Sundararaman, Ravishankar; Atwater, Harry A.
  • Nanophotonics, Vol. 5, Issue 1
  • DOI: 10.1515/nanoph-2016-0007

Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials
journal, September 2015

  • Li, Wei; Coppens, Zachary J.; Besteiro, Lucas V.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9379

On the Application of Interference Phenomena to the Solution of Various Problems of Spectroscopy and Metrology
journal, February 1899

  • Perot, A.; Fabry, Charles
  • The Astrophysical Journal, Vol. 9
  • DOI: 10.1086/140557

Field and thermionic-field emission in Schottky barriers
journal, July 1966


JDFTx: Software for joint density-functional theory
journal, January 2017


Plasmonic coupling at a metal/semiconductor interface
journal, November 2017


Plasmonic hot electron transport drives nano-localized chemistry
journal, March 2017

  • CortĂ©s, Emiliano; Xie, Wei; Cambiasso, Javier
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14880

Plasmon-Induced Hot Carriers in Metallic Nanoparticles
journal, July 2014

  • Manjavacas, Alejandro; Liu, Jun G.; Kulkarni, Vikram
  • ACS Nano, Vol. 8, Issue 8
  • DOI: 10.1021/nn502445f

The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures
journal, July 1931


Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates
journal, April 2014

  • Leenheer, Andrew J.; Narang, Prineha; Lewis, Nathan S.
  • Journal of Applied Physics, Vol. 115, Issue 13
  • DOI: 10.1063/1.4870040

Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits
journal, August 2012

  • White, Thomas P.; Catchpole, Kylie R.
  • Applied Physics Letters, Vol. 101, Issue 7
  • DOI: 10.1063/1.4746425

Direct Plasmon-Driven Photoelectrocatalysis
journal, August 2015


Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry
journal, December 2015

  • Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha
  • ACS Nano, Vol. 10, Issue 1
  • DOI: 10.1021/acsnano.5b06199

Physics of Semiconductor Devices
book, January 2007


Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2
journal, January 2004

  • Tian, Yang; Tatsuma, Tetsu
  • Chemical Communications, Issue 16
  • DOI: 10.1039/b405061d

Metamaterial Perfect Absorber Based Hot Electron Photodetection
journal, May 2014


Photochemical transformations on plasmonic metal nanoparticles
journal, May 2015

  • Linic, Suljo; Aslam, Umar; Boerigter, Calvin
  • Nature Materials, Vol. 14, Issue 6
  • DOI: 10.1038/nmat4281

Photodetection with Active Optical Antennas
journal, May 2011

  • Knight, M. W.; Sobhani, H.; Nordlander, P.
  • Science, Vol. 332, Issue 6030, p. 702-704
  • DOI: 10.1126/science.1203056

Ab initio phonon coupling and optical response of hot electrons in plasmonic metals
journal, August 2016