DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces

Abstract

Hot carriers generated from the nonradiative decay of localized surface plasmons are capable of driving charge-transfer reactions at the surfaces of metal nanostructures. Photocatalytic devices utilizing plasmonic hot carriers are often based on metal nanoparticle/semiconductor heterostructures owing to their efficient electron–hole separation ability. The rapid thermalization of hot carriers generated at the metal nanoparticles yields a distribution of carrier energies that determines the capability of the photocatalytic device to drive redox reactions. Here in this paper, we quantify the thermalized hot carrier energy distribution generated at Au/TiO2 nanostructures using wavelength-dependent scanning electrochemical microscopy and a series of molecular probes with different redox potentials. We determine the quantum efficiencies and oxidizing power of the hot carriers from wavelength-dependent reaction rates and photocurrent across the metal/semiconductor interface. The wavelength-dependent reaction efficiency tracks the surface plasmon resonance spectrum of the Au nanoparticles, showing that the reaction is facilitated by plasmon excitation, while the responses from molecules with different redox potentials shed light on the energy distribution of the hot holes generated at metal nanoparticle/semiconductor heterostructures. The results provide important insight into the energies of the plasmon-generated hot carriers and quantum efficiencies of plasmonic photocatalytic devices.

Authors:
ORCiD logo [1];  [1];  [1]; ORCiD logo [1]
  1. Temple Univ., Philadelphia, PA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Complex Materials from First Principles (CCM); Temple Univ., Philadelphia, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Air Force Office of Scientific Research (AFOSR)
OSTI Identifier:
1608032
Grant/Contract Number:  
SC0012575
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 13; Journal Issue: 3; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; plasmon; hot-hole; hot carriers

Citation Formats

Yu, Yun, Wijesekara, Kanishka D., Xi, Xiaoxing, and Willets, Katherine A. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces. United States: N. p., 2019. Web. doi:10.1021/acsnano.9b00219.
Yu, Yun, Wijesekara, Kanishka D., Xi, Xiaoxing, & Willets, Katherine A. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces. United States. https://doi.org/10.1021/acsnano.9b00219
Yu, Yun, Wijesekara, Kanishka D., Xi, Xiaoxing, and Willets, Katherine A. Tue . "Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces". United States. https://doi.org/10.1021/acsnano.9b00219. https://www.osti.gov/servlets/purl/1608032.
@article{osti_1608032,
title = {Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces},
author = {Yu, Yun and Wijesekara, Kanishka D. and Xi, Xiaoxing and Willets, Katherine A.},
abstractNote = {Hot carriers generated from the nonradiative decay of localized surface plasmons are capable of driving charge-transfer reactions at the surfaces of metal nanostructures. Photocatalytic devices utilizing plasmonic hot carriers are often based on metal nanoparticle/semiconductor heterostructures owing to their efficient electron–hole separation ability. The rapid thermalization of hot carriers generated at the metal nanoparticles yields a distribution of carrier energies that determines the capability of the photocatalytic device to drive redox reactions. Here in this paper, we quantify the thermalized hot carrier energy distribution generated at Au/TiO2 nanostructures using wavelength-dependent scanning electrochemical microscopy and a series of molecular probes with different redox potentials. We determine the quantum efficiencies and oxidizing power of the hot carriers from wavelength-dependent reaction rates and photocurrent across the metal/semiconductor interface. The wavelength-dependent reaction efficiency tracks the surface plasmon resonance spectrum of the Au nanoparticles, showing that the reaction is facilitated by plasmon excitation, while the responses from molecules with different redox potentials shed light on the energy distribution of the hot holes generated at metal nanoparticle/semiconductor heterostructures. The results provide important insight into the energies of the plasmon-generated hot carriers and quantum efficiencies of plasmonic photocatalytic devices.},
doi = {10.1021/acsnano.9b00219},
journal = {ACS Nano},
number = 3,
volume = 13,
place = {United States},
year = {Tue Feb 26 00:00:00 EST 2019},
month = {Tue Feb 26 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 57 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Surface-Plasmon-Driven Hot Electron Photochemistry
journal, November 2017


Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures
journal, May 2011

  • Christopher, Phillip; Xin, Hongliang; Linic, Suljo
  • Nature Chemistry, Vol. 3, Issue 6
  • DOI: 10.1038/nchem.1032

Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
journal, November 2011

  • Linic, Suljo; Christopher, Phillip; Ingram, David B.
  • Nature Materials, Vol. 10, Issue 12
  • DOI: 10.1038/nmat3151

Direct Photocatalysis by Plasmonic Nanostructures
journal, December 2013

  • Kale, Matthew J.; Avanesian, Talin; Christopher, Phillip
  • ACS Catalysis, Vol. 4, Issue 1
  • DOI: 10.1021/cs400993w

Toward a mechanistic understanding of plasmon-mediated photocatalysis
journal, August 2018

  • Brooks, James L.; Warkentin, Christopher L.; Saha, Dayeeta
  • Nanophotonics, Vol. 7, Issue 11
  • DOI: 10.1515/nanoph-2018-0073

Photochemical transformations on plasmonic metal nanoparticles
journal, May 2015

  • Linic, Suljo; Aslam, Umar; Boerigter, Calvin
  • Nature Materials, Vol. 14, Issue 6
  • DOI: 10.1038/nmat4281

Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion
journal, January 2016

  • Narang, Prineha; Sundararaman, Ravishankar; Atwater, Harry A.
  • Nanophotonics, Vol. 5, Issue 1
  • DOI: 10.1515/nanoph-2016-0007

Localized surface plasmons and hot electrons
journal, December 2014


Hot Charge Carrier Transmission from Plasmonic Nanostructures
journal, May 2017


Plasmon-induced hot carrier science and technology
journal, January 2015

  • Brongersma, Mark L.; Halas, Naomi J.; Nordlander, Peter
  • Nature Nanotechnology, Vol. 10, Issue 1
  • DOI: 10.1038/nnano.2014.311

Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry
journal, August 2016

  • Brandt, Nathaniel C.; Keller, Emily L.; Frontiera, Renee R.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 16
  • DOI: 10.1021/acs.jpclett.6b01453

Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO 2 Films Loaded with Gold Nanoparticles
journal, May 2005

  • Tian, Yang; Tatsuma, Tetsu
  • Journal of the American Chemical Society, Vol. 127, Issue 20
  • DOI: 10.1021/ja042192u

Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts
journal, August 2017

  • Wang, Shengyang; Gao, Yuying; Miao, Shu
  • Journal of the American Chemical Society, Vol. 139, Issue 34
  • DOI: 10.1021/jacs.7b04470

Surface Plasmon-Driven Water Reduction: Gold Nanoparticle Size Matters
journal, July 2014

  • Qian, Kun; Sweeny, Brendan C.; Johnston-Peck, Aaron C.
  • Journal of the American Chemical Society, Vol. 136, Issue 28
  • DOI: 10.1021/ja504097v

Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water
journal, January 2011

  • Gomes Silva, Cláudia; Juárez, Raquel; Marino, Tiziana
  • Journal of the American Chemical Society, Vol. 133, Issue 3
  • DOI: 10.1021/ja1086358

An autonomous photosynthetic device in which all charge carriers derive from surface plasmons
journal, February 2013

  • Mubeen, Syed; Lee, Joun; Singh, Nirala
  • Nature Nanotechnology, Vol. 8, Issue 4
  • DOI: 10.1038/nnano.2013.18

Plasmonic Photoanodes for Solar Water Splitting with Visible Light
journal, January 2012

  • Lee, Joun; Mubeen, Syed; Ji, Xiulei
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl302796f

Photocatalytic Conversion of CO 2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions
journal, July 2011

  • Hou, Wenbo; Hung, Wei Hsuan; Pavaskar, Prathamesh
  • ACS Catalysis, Vol. 1, Issue 8
  • DOI: 10.1021/cs2001434

Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles
journal, June 2017


Gold Nanoparticles Located at the Interface of Anatase/Rutile TiO 2 Particles as Active Plasmonic Photocatalysts for Aerobic Oxidation
journal, April 2012

  • Tsukamoto, Daijiro; Shiraishi, Yasuhiro; Sugano, Yoshitsune
  • Journal of the American Chemical Society, Vol. 134, Issue 14
  • DOI: 10.1021/ja2120647

Visible-Light-Driven Selective Photocatalytic Hydrogenation of Cinnamaldehyde over Au/SiC Catalysts
journal, July 2016

  • Hao, Cai-Hong; Guo, Xiao-Ning; Pan, Yung-Tin
  • Journal of the American Chemical Society, Vol. 138, Issue 30
  • DOI: 10.1021/jacs.6b04175

The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles
journal, May 2011

  • Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.
  • Nature Chemistry, Vol. 3, Issue 6
  • DOI: 10.1038/nchem.1048

Plasmon-Assisted Photocurrent Generation from Visible to Near-Infrared Wavelength Using a Au-Nanorods/TiO 2 Electrode
journal, June 2010

  • Nishijima, Yoshiaki; Ueno, Kosei; Yokota, Yukie
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 13
  • DOI: 10.1021/jz1006675

Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO 2 Nanoparticles
journal, December 2007

  • Furube, Akihiro; Du, Luchao; Hara, Kohjiro
  • Journal of the American Chemical Society, Vol. 129, Issue 48
  • DOI: 10.1021/ja076134v

Quantification of Efficient Plasmonic Hot-Electron Injection in Gold Nanoparticle–TiO 2 Films
journal, September 2017


Hot Carrier Extraction with Plasmonic Broadband Absorbers
journal, March 2016


Hot Hole Photoelectrochemistry on Au@SiO 2 @Au Nanoparticles
journal, April 2017

  • Schlather, Andrea E.; Manjavacas, Alejandro; Lauchner, Adam
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 9
  • DOI: 10.1021/acs.jpclett.7b00563

Plasmon-Induced Hot Carriers in Metallic Nanoparticles
journal, July 2014

  • Manjavacas, Alejandro; Liu, Jun G.; Kulkarni, Vikram
  • ACS Nano, Vol. 8, Issue 8
  • DOI: 10.1021/nn502445f

Theoretical predictions for hot-carrier generation from surface plasmon decay
journal, December 2014

  • Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6788

Hot-Electron Dynamics and Thermalization in Small Metallic Nanoparticles
journal, July 2016


Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements
journal, May 2018


Scanning Electrochemical Microscopy. 42. Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interfaces
journal, August 2001

  • Haram, Santosh K.; Bard, Allen J.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 34
  • DOI: 10.1021/jp011068j

Photo-electrochemical properties of quantum rods studied by scanning electrochemical microscopy
journal, January 2017

  • Lhenry, Sébastien; Boichard, Benoît; Leroux, Yann R.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 6
  • DOI: 10.1039/C6CP07143K

High-Resolution Analysis of Photoanodes for Water Splitting by Means of Scanning Photoelectrochemical Microscopy
journal, December 2016


Electrochemical Imaging of Photoanodic Water Oxidation Enhancements on TiO 2 Thin Films Modified by Subsurface Aluminum Nanodimers
journal, September 2016


Hot Carriers versus Thermal Effects: Resolving the Enhancement Mechanisms for Plasmon-Mediated Photoelectrochemical Reactions
journal, January 2018

  • Yu, Yun; Sundaresan, Vignesh; Willets, Katherine A.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 9
  • DOI: 10.1021/acs.jpcc.7b12080

Quantifying photothermal heating at plasmonic nanoparticles by scanning electrochemical microscopy
journal, January 2018

  • Yu, Yun; Williams, Jeffrey D.; Willets, Katherine A.
  • Faraday Discussions, Vol. 210
  • DOI: 10.1039/C8FD00057C

Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy
journal, February 2017


Toward More Reliable Measurements of Electron-Transfer Kinetics at Nanoelectrodes: Next Approximation
journal, November 2016


Au/TiO 2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity
journal, December 2013

  • Bian, Zhenfeng; Tachikawa, Takashi; Zhang, Peng
  • Journal of the American Chemical Society, Vol. 136, Issue 1
  • DOI: 10.1021/ja410994f

Charging and discharging at the nanoscale: Fermi level equilibration of metallic nanoparticles
journal, January 2015

  • Scanlon, Micheál D.; Peljo, Pekka; Méndez, Manuel A.
  • Chemical Science, Vol. 6, Issue 5
  • DOI: 10.1039/C5SC00461F

Preparation and Electrochemical Response of 1−3 nm Pt Disk Electrodes
journal, July 2009

  • Li, Yongxin; Bergman, David; Zhang, Bo
  • Analytical Chemistry, Vol. 81, Issue 13
  • DOI: 10.1021/ac900777n

Zeptomole Voltammetric Detection and Electron-Transfer Rate Measurements Using Platinum Electrodes of Nanometer Dimensions
journal, August 2003

  • Watkins, John J.; Chen, Jinyuan; White, Henry S.
  • Analytical Chemistry, Vol. 75, Issue 16
  • DOI: 10.1021/ac0342931

Works referencing / citing this record:

Plasmonic hole ejection involved in plasmon-induced charge separation
journal, January 2020

  • Tatsuma, Tetsu; Nishi, Hiroyasu
  • Nanoscale Horizons, Vol. 5, Issue 4
  • DOI: 10.1039/c9nh00649d

Accelerated site-selective photooxidation on Au nanoparticles via electrochemically-assisted plasmonic hole ejection
journal, January 2019