DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron Heating in Low-Mach-number Perpendicular Shocks. I. Heating Mechanism

Abstract

Recent X-ray observations of merger shocks in galaxy clusters have shown that the postshock plasma has two temperatures, with the protons hotter than the electrons. By means of two-dimensional particle-in-cell simulations, we study the physics of electron irreversible heating in low-Mach-number perpendicular shocks, for a representative case with sonic Mach number of 3 and plasma beta of 16. We find that two basic ingredients are needed for electron entropy production: (1) an electron temperature anisotropy, induced by field amplification coupled to adiabatic invariance; and (2) a mechanism to break the electron adiabatic invariance itself. In shocks, field amplification occurs at two major sites: at the shock ramp, where density compression leads to an increase of the frozen-in field; and farther downstream, where the shock-driven proton temperature anisotropy generates strong proton cyclotron and mirror modes. The electron temperature anisotropy induced by field amplification exceeds the threshold of the electron whistler instability. The growth of whistler waves breaks the electron adiabatic invariance and allows for efficient entropy production. For our reference run, the postshock electron temperature exceeds the adiabatic expectation by $$\simeq 15 \% $$, resulting in an electron-to-proton temperature ratio of $$\simeq 0.45$$. We find that the electron heating efficiency displays only a weak dependence on mass ratio (less than $$\simeq 30 \% $$ drop, as we increase the mass ratio from $${m}_{i}/{m}_{e}=49$$ up to $${m}_{i}/{m}_{e}=1600$$). We develop an analytical model of electron irreversible heating and show that it is in excellent agreement with our simulation results.

Authors:
ORCiD logo [1];  [2];  [1]
  1. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)
  2. Columbia Univ., New York, NY (United States)
Publication Date:
Research Org.:
Columbia Univ., New York, NY (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1511008
Grant/Contract Number:  
SC0016542
Resource Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 851; Journal Issue: 2; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS

Citation Formats

Guo, Xinyi, Sironi, Lorenzo, and Narayan, Ramesh. Electron Heating in Low-Mach-number Perpendicular Shocks. I. Heating Mechanism. United States: N. p., 2017. Web. doi:10.3847/1538-4357/aa9b82.
Guo, Xinyi, Sironi, Lorenzo, & Narayan, Ramesh. Electron Heating in Low-Mach-number Perpendicular Shocks. I. Heating Mechanism. United States. https://doi.org/10.3847/1538-4357/aa9b82
Guo, Xinyi, Sironi, Lorenzo, and Narayan, Ramesh. Wed . "Electron Heating in Low-Mach-number Perpendicular Shocks. I. Heating Mechanism". United States. https://doi.org/10.3847/1538-4357/aa9b82. https://www.osti.gov/servlets/purl/1511008.
@article{osti_1511008,
title = {Electron Heating in Low-Mach-number Perpendicular Shocks. I. Heating Mechanism},
author = {Guo, Xinyi and Sironi, Lorenzo and Narayan, Ramesh},
abstractNote = {Recent X-ray observations of merger shocks in galaxy clusters have shown that the postshock plasma has two temperatures, with the protons hotter than the electrons. By means of two-dimensional particle-in-cell simulations, we study the physics of electron irreversible heating in low-Mach-number perpendicular shocks, for a representative case with sonic Mach number of 3 and plasma beta of 16. We find that two basic ingredients are needed for electron entropy production: (1) an electron temperature anisotropy, induced by field amplification coupled to adiabatic invariance; and (2) a mechanism to break the electron adiabatic invariance itself. In shocks, field amplification occurs at two major sites: at the shock ramp, where density compression leads to an increase of the frozen-in field; and farther downstream, where the shock-driven proton temperature anisotropy generates strong proton cyclotron and mirror modes. The electron temperature anisotropy induced by field amplification exceeds the threshold of the electron whistler instability. The growth of whistler waves breaks the electron adiabatic invariance and allows for efficient entropy production. For our reference run, the postshock electron temperature exceeds the adiabatic expectation by $\simeq 15 \% $, resulting in an electron-to-proton temperature ratio of $\simeq 0.45$. We find that the electron heating efficiency displays only a weak dependence on mass ratio (less than $\simeq 30 \% $ drop, as we increase the mass ratio from ${m}_{i}/{m}_{e}=49$ up to ${m}_{i}/{m}_{e}=1600$). We develop an analytical model of electron irreversible heating and show that it is in excellent agreement with our simulation results.},
doi = {10.3847/1538-4357/aa9b82},
journal = {The Astrophysical Journal (Online)},
number = 2,
volume = 851,
place = {United States},
year = {Wed Dec 20 00:00:00 EST 2017},
month = {Wed Dec 20 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electromagnetic ion cyclotron instability driven by ion energy anisotropy in high-beta plasmas
journal, January 1975

  • Davidson, R. C.; Ogden, Joan M.
  • Physics of Fluids, Vol. 18, Issue 8
  • DOI: 10.1063/1.861253

The Physics of Cluster Mergers
book, January 2002


Mach number dependence of electron heating in high Mach number quasiperpendicular shocks
journal, April 2010


A shock front at the radio relic of Abell 2744
journal, June 2016

  • Eckert, D.; Jauzac, M.; Vazza, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 461, Issue 2
  • DOI: 10.1093/mnras/stw1435

Electron-Ion Temperature Equilibration in Collisionless Shocks: The Supernova Remnant-Solar Wind Connection
journal, July 2013

  • Ghavamian, Parviz; Schwartz, Steven J.; Mitchell, Jeremy
  • Space Science Reviews, Vol. 178, Issue 2-4
  • DOI: 10.1007/s11214-013-9999-0

Suzaku observations of the merging galaxy cluster Abell 2255: The northeast radio relic
journal, April 2017


Magnetic pumping by magnetosonic waves in the presence of noncompressive electromagnetic fluctuations
journal, January 1986

  • Borovsky, Joseph E.
  • Physics of Fluids, Vol. 29, Issue 10
  • DOI: 10.1063/1.865842

Cosmological Shock Waves and Their Role in the Large‐Scale Structure of the Universe
journal, August 2003

  • Ryu, Dongsu; Kang, Hyesung; Hallman, Eric
  • The Astrophysical Journal, Vol. 593, Issue 2
  • DOI: 10.1086/376723

Simulations of relativistic collisionless shocks: shock structure and particle acceleration
conference, January 2005

  • Spitkovsky, Anatoly
  • ASTROPHYSICAL SOURCES OF HIGH ENERGY PARTICLES AND RADIATION, AIP Conference Proceedings
  • DOI: 10.1063/1.2141897

Discovery of a radio relic in the low mass, merging galaxy cluster PLCK G200.9−28.2 
journal, August 2017

  • Kale, Ruta; Wik, Daniel R.; Giacintucci, Simona
  • Monthly Notices of the Royal Astronomical Society, Vol. 472, Issue 1
  • DOI: 10.1093/mnras/stx2031

Chandra observation of two shock fronts in the merging galaxy cluster Abell 2146: The merging cluster Abell 2146
journal, May 2010


Velocity Space Diffusion from Weak Plasma Turbulence in a Magnetic Field
journal, January 1966


The Boltzmann equation an d the one-fluid hydromagnetic equations in the absence of particle collisions
journal, July 1956

  • Chew, G. F.; Goldberger, M. L.; Low, F. E.
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 236, Issue 1204, p. 112-118
  • DOI: 10.1098/rspa.1956.0116

Coulomb interactions in the intracluster medium
journal, January 1998


Structure of perpendicular shocks in collisionless plasma
journal, January 1983


Shock fronts, electron-ion equilibration and intracluster medium transport processes in the merging cluster Abell 2146: The merging cluster Abell 2146
journal, May 2012


Two‐Temperature Intracluster Medium in Merging Clusters of Galaxies
journal, August 1999

  • Takizawa, Motokazu
  • The Astrophysical Journal, Vol. 520, Issue 2
  • DOI: 10.1086/307497

Heating of a Confined Plasma by Oscillating Electromagnetic Fields
journal, January 1958

  • Berger, J. M.; Newcomb, W. A.; Dawson, J. M.
  • Physics of Fluids, Vol. 1, Issue 4
  • DOI: 10.1063/1.1705888

Particle simulation study of electron heating by counter-streaming ion beams ahead of supernova remnant shocks
journal, July 2012


Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts
journal, June 2011


A Textbook Example of a Bow Shock in the Merging Galaxy Cluster 1E 0657-56
journal, February 2002

  • Markevitch, M.; Gonzalez, A. H.; David, L.
  • The Astrophysical Journal, Vol. 567, Issue 1
  • DOI: 10.1086/339619

Loading relativistic Maxwell distributions in particle simulations
journal, April 2015


Transition scale at quasiperpendicular collisionless shocks: Full particle electromagnetic simulations
journal, June 2006

  • Scholer, Manfred; Burgess, David
  • Physics of Plasmas, Vol. 13, Issue 6
  • DOI: 10.1063/1.2207126

Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster
journal, September 2010


SHARP: A Spatially Higher-order, Relativistic Particle-in-cell Code
journal, May 2017

  • Shalaby, Mohamad; Broderick, Avery E.; Chang, Philip
  • The Astrophysical Journal, Vol. 841, Issue 1
  • DOI: 10.3847/1538-4357/aa6d13

The stability of the pinch
journal, July 1958

  • Chandrasekhar, Subrahmanyan; Kaufman, A. N.; Watson, K. M.
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 245, Issue 1243, p. 435-455
  • DOI: 10.1098/rspa.1958.0094

Kinetic Physics of the Mirror Instability
journal, January 1993

  • McKean, M. E.; Gary, S. P.; Winske, D.
  • Journal of Geophysical Research, Vol. 98, Issue A12
  • DOI: 10.1029/93ja01993

Do the Electrons and Ions in X‐Ray Clusters Share the Same Temperature?
journal, December 1997

  • Fox, David C.; Loeb, Abraham
  • The Astrophysical Journal, Vol. 491, Issue 2
  • DOI: 10.1086/305007

XMM–Newton observations of the merging galaxy cluster CIZA J2242.8+5301
journal, January 2013

  • Ogrean, G. A.; Brüggen, M.; Röttgering, H.
  • Monthly Notices of the Royal Astronomical Society, Vol. 429, Issue 3
  • DOI: 10.1093/mnras/sts538

The radio relic in Abell 2256: overall spectrum and implications for electron acceleration
journal, February 2015


Collisionless Damping of Hydromagnetic Waves
journal, January 1966


Density-Transition Scale at Quasiperpendicular Collisionless Shocks
journal, December 2003


High temporal resolution observations of electron heating at the bow shock
journal, March 1979

  • Bame, S. J.; Asbridge, J. R.; Gosling, J. T.
  • Space Science Reviews, Vol. 23, Issue 1
  • DOI: 10.1007/BF00174112

Alma-Sz Detection of a Galaxy Cluster Merger Shock at half the age of the Universe
journal, September 2016


XMM-NEWTON OBSERVATION OF THE NORTHWEST RADIO RELIC REGION IN A3667
journal, May 2010


Electron anisotropy constraint in the magnetosheath: Cluster observations
journal, January 2005


Linear theory of electron temperature anisotropy instabilities: Whistler, mirror, and Weibel
journal, January 2006

  • Gary, S. Peter; Karimabadi, Homa
  • Journal of Geophysical Research, Vol. 111, Issue A11
  • DOI: 10.1029/2006JA011764

Electromagnetic electron temperature anisotropy instabilities
journal, August 1985

  • Gary, S. Peter; Madland, Christian D.
  • Journal of Geophysical Research: Space Physics, Vol. 90, Issue A8
  • DOI: 10.1029/JA090iA08p07607

Whistler instability: Electron anisotropy upper bound
journal, May 1996

  • Gary, S. Peter; Wang, Joseph
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A5
  • DOI: 10.1029/96JA00323

Proton temperature anisotropy upper bound
journal, December 1997

  • Gary, S. Peter; Wang, Joseph; Winske, Dan
  • Journal of Geophysical Research: Space Physics, Vol. 102, Issue A12
  • DOI: 10.1029/97JA01726

Non-Thermal Electron Acceleration in low mach Number Collisionless Shocks. i. Particle Energy Spectra and Acceleration Mechanism
journal, October 2014


Simulation of a perpendicular bow shock
journal, December 1981

  • Leroy, M. M.; Goodrich, C. C.; Winske, D.
  • Geophysical Research Letters, Vol. 8, Issue 12
  • DOI: 10.1029/GL008i012p01269

The structure of perpendicular bow shocks
journal, July 1982

  • Leroy, M. M.; Winske, D.; Goodrich, C. C.
  • Journal of Geophysical Research: Space Physics, Vol. 87, Issue A7
  • DOI: 10.1029/JA087iA07p05081

THE RADIO RELICS AND HALO OF EL GORDO, A MASSIVE z = 0.870 CLUSTER MERGER
journal, April 2014

  • Lindner, Robert R.; Baker, Andrew J.; Hughes, John P.
  • The Astrophysical Journal, Vol. 786, Issue 1
  • DOI: 10.1088/0004-637X/786/1/49

Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks
journal, January 2003


Entropy Generation across Earth’s Collisionless Bow Shock
journal, February 2012


Nonequilibrium Electrons and the Sunyaev-Zel'Dovich Effect of Galaxy Clusters
journal, July 2009


Particle Acceleration in Relativistic Magnetized Collisionless pair Shocks: Dependence of Shock Acceleration on Magnetic Obliquity
journal, June 2009


Effects of the Non-Equipartition of Electrons and ions in the Outskirts of Relaxed Galaxy Clusters
journal, December 2009


Heating of a confined plasma by oscillating electromagnetic fields
journal, September 1958


Two-temperature intracluster medium in merging clusters of galaxies
journal, August 1999


Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster
text, January 2010


Electron-Ion Temperature Equilibration in Collisionless Shocks: the Supernova Remnant-Solar Wind Connection
text, January 2013


A shock front at the radio relic of Abell 2744
text, January 2016


ALMA-SZ Detection of a Galaxy Cluster Merger Shock at Half the Age of the Universe
text, January 2016


SHARP: A Spatially Higher-order, Relativistic Particle-in-Cell Code
text, January 2017


A Textbook Example of a Bow Shock in the Merging Galaxy Cluster 1E0657-56
text, January 2001


Works referencing / citing this record:

Alfvén Ion Cyclotron Waves in Sheath Regions Driven by Interplanetary Coronal Mass Ejections
journal, June 2019

  • Ala‐Lahti, Matti; Kilpua, Emilia K. J.; Souček, Jan
  • Journal of Geophysical Research: Space Physics, Vol. 124, Issue 6
  • DOI: 10.1029/2019ja026579

Decomposition of plasma kinetic entropy into position and velocity space and the use of kinetic entropy in particle-in-cell simulations
journal, August 2019

  • Liang, Haoming; Cassak, Paul A.; Servidio, Sergio
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5098888

Two-Temperature Magnetohydrodynamics Simulations of Propagation of Semi-Relativistic Jets
journal, January 2019


Density jump as a function of magnetic field for collisionless shocks in pair plasmas: The perpendicular case
journal, June 2019


Wave Generation and Heat Flux Suppression in Astrophysical Plasma Systems
journal, November 2018

  • Roberg-Clark, G. T.; Drake, J. F.; Swisdak, M.
  • The Astrophysical Journal, Vol. 867, Issue 2
  • DOI: 10.3847/1538-4357/aae393

Thermal disequilibration of ions and electrons by collisionless plasma turbulence
journal, December 2018

  • Kawazura, Yohei; Barnes, Michael; Schekochihin, Alexander A.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 3
  • DOI: 10.1073/pnas.1812491116