DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo3P) for Electrochemical Hydrogen Evolution

Abstract

Abstract Solid‐state electrocatalysis plays a crucial role in the development of renewable energy to reshape current and future energy needs. However, finding an inexpensive and highly active catalyst to replace precious metals remains a big challenge for this technology. Here, tri‐molybdenum phosphide (Mo 3 P) is found as a promising nonprecious metal and earth‐abundant candidate with outstanding catalytic properties that can be used for electrocatalytic processes. The catalytic performance of Mo 3 P nanoparticles is tested in the hydrogen evolution reaction (HER). The results indicate an onset potential of as low as 21 mV, H 2 formation rate, and exchange current density of 214.7 µmol s −1 g −1 cat (at only 100 mV overpotential) and 279.07 µA cm −2 , respectively, which are among the closest values yet observed to platinum. Combined atomic‐scale characterizations and computational studies confirm that high density of molybdenum (Mo) active sites at the surface with superior intrinsic electronic properties are mainly responsible for the remarkable HER performance. The density functional theory calculation results also confirm that the exceptional performance of Mo 3 P is due to neutral Gibbs free energy (Δ G H* ) of the hydrogen (H) adsorption at above 1/2 monolayer (ML)more » coverage of the (110) surface, exceeding the performance of existing non‐noble metal catalysts for HER.« less

Authors:
ORCiD logo [1];  [1];  [2];  [3];  [1];  [1];  [1];  [3];  [2]; ORCiD logo [1]
  1. Illinois Institute of Technology, Chicago, IL (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Department of Mechanical and Industrial Engineering, Chicago, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1531000
Alternate Identifier(s):
OSTI ID: 1510349
Grant/Contract Number:  
AC02-05CH11231; DMR-1420709; ECCS-1542205; JEM-ARM200CF; DMR-0959470; DMR-1720139; DEAC02‐05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 9; Journal Issue: 22; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
ENGLISH
Subject:
25 ENERGY STORAGE; Solid-state electrocatalysis; Tri-molybdenum phosphide; Non-precious metals; Active sites; Hydrogen evolution reaction

Citation Formats

Kondori, Alireza, Esmaeilirad, Mohammadreza, Baskin, Artem, Song, Boao, Wei, Jialiang, Chen, Wei, Segre, Carlo U., Shahbazian‐Yassar, Reza, Prendergast, David, and Asadi, Mohammad. Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo3P) for Electrochemical Hydrogen Evolution. United States: N. p., 2019. Web. doi:10.1002/aenm.201900516.
Kondori, Alireza, Esmaeilirad, Mohammadreza, Baskin, Artem, Song, Boao, Wei, Jialiang, Chen, Wei, Segre, Carlo U., Shahbazian‐Yassar, Reza, Prendergast, David, & Asadi, Mohammad. Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo3P) for Electrochemical Hydrogen Evolution. United States. https://doi.org/10.1002/aenm.201900516
Kondori, Alireza, Esmaeilirad, Mohammadreza, Baskin, Artem, Song, Boao, Wei, Jialiang, Chen, Wei, Segre, Carlo U., Shahbazian‐Yassar, Reza, Prendergast, David, and Asadi, Mohammad. Thu . "Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo3P) for Electrochemical Hydrogen Evolution". United States. https://doi.org/10.1002/aenm.201900516. https://www.osti.gov/servlets/purl/1531000.
@article{osti_1531000,
title = {Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo3P) for Electrochemical Hydrogen Evolution},
author = {Kondori, Alireza and Esmaeilirad, Mohammadreza and Baskin, Artem and Song, Boao and Wei, Jialiang and Chen, Wei and Segre, Carlo U. and Shahbazian‐Yassar, Reza and Prendergast, David and Asadi, Mohammad},
abstractNote = {Abstract Solid‐state electrocatalysis plays a crucial role in the development of renewable energy to reshape current and future energy needs. However, finding an inexpensive and highly active catalyst to replace precious metals remains a big challenge for this technology. Here, tri‐molybdenum phosphide (Mo 3 P) is found as a promising nonprecious metal and earth‐abundant candidate with outstanding catalytic properties that can be used for electrocatalytic processes. The catalytic performance of Mo 3 P nanoparticles is tested in the hydrogen evolution reaction (HER). The results indicate an onset potential of as low as 21 mV, H 2 formation rate, and exchange current density of 214.7 µmol s −1 g −1 cat (at only 100 mV overpotential) and 279.07 µA cm −2 , respectively, which are among the closest values yet observed to platinum. Combined atomic‐scale characterizations and computational studies confirm that high density of molybdenum (Mo) active sites at the surface with superior intrinsic electronic properties are mainly responsible for the remarkable HER performance. The density functional theory calculation results also confirm that the exceptional performance of Mo 3 P is due to neutral Gibbs free energy (Δ G H* ) of the hydrogen (H) adsorption at above 1/2 monolayer (ML) coverage of the (110) surface, exceeding the performance of existing non‐noble metal catalysts for HER.},
doi = {10.1002/aenm.201900516},
journal = {Advanced Energy Materials},
number = 22,
volume = 9,
place = {United States},
year = {Thu May 02 00:00:00 EDT 2019},
month = {Thu May 02 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The active site and catalytic mechanism of NiFe hydrogenases
journal, January 2003

  • Volbeda, Anne; Fontecilla-Camps, Juan C.
  • Dalton Trans., Issue 21
  • DOI: 10.1039/B304316A

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Exploiting carbon flatland
journal, December 2011


Nanostructured transition metal dichalcogenide electrocatalysts for CO 2 reduction in ionic liquid
journal, July 2016


Projector augmented-wave method
journal, December 1994


Mapping Catalytically Relevant Edge Electronic States of MoS 2
journal, February 2018


Closely Interconnected Network of Molybdenum Phosphide Nanoparticles: A Highly Efficient Electrocatalyst for Generating Hydrogen from Water
journal, June 2014

  • Xing, Zhicai; Liu, Qian; Asiri, Abdullah M.
  • Advanced Materials, Vol. 26, Issue 32
  • DOI: 10.1002/adma.201401692

Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity
journal, December 1993


Density-functional method for very large systems with LCAO basis sets
journal, January 1997


Recent Advances in Electrocatalytic Reduction of Carbon Dioxide Using Metal-Free Catalysts
journal, January 2015

  • Mao, Xianwen; Hatton, T. Alan
  • Industrial & Engineering Chemistry Research, Vol. 54, Issue 16
  • DOI: 10.1021/ie504336h

Molybdenum Phosphide as ano-Propylaniline Hydrodenitrogenation Catalyst: A First Principles Study
journal, December 2004

  • Milman, Victor; Winkler, Bj�rn; Gomperts, Roberto
  • Chemistry - A European Journal, Vol. 10, Issue 24
  • DOI: 10.1002/chem.200400510

A grid-based Bader analysis algorithm without lattice bias
journal, January 2009


Tailoring the Edge Structure of Molybdenum Disulfide toward Electrocatalytic Reduction of Carbon Dioxide
journal, December 2016


Molybdenum Phosphide/Carbon Nanotube Hybrids as pH-Universal Electrocatalysts for Hydrogen Evolution Reaction
journal, February 2018

  • Zhang, Xing; Yu, Xiaolu; Zhang, Linjie
  • Advanced Functional Materials, Vol. 28, Issue 16
  • DOI: 10.1002/adfm.201706523

Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials
journal, February 2011


Hydrogenase sophistication
journal, January 1999

  • Cammack, Richard
  • Nature, Vol. 397, Issue 6716
  • DOI: 10.1038/16601

Materials for solar fuels and chemicals
journal, December 2016

  • Montoya, Joseph H.; Seitz, Linsey C.; Chakthranont, Pongkarn
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4778

Porous Molybdenum Phosphide Nano-Octahedrons Derived from Confined Phosphorization in UIO-66 for Efficient Hydrogen Evolution
journal, July 2016

  • Yang, Jian; Zhang, Fengjun; Wang, Xin
  • Angewandte Chemie International Edition, Vol. 55, Issue 41
  • DOI: 10.1002/anie.201604315

A Monodisperse Rh 2 P-Based Electrocatalyst for Highly Efficient and pH-Universal Hydrogen Evolution Reaction
journal, March 2018

  • Yang, Fulin; Zhao, Yuanmeng; Du, Yeshuang
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201703489

Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
journal, January 2016

  • Shi, Yanmei; Zhang, Bin
  • Chemical Society Reviews, Vol. 45, Issue 6, p. 1529-1541
  • DOI: 10.1039/C5CS00434A

Trends in the Exchange Current for Hydrogen Evolution
journal, January 2005

  • Nørskov, J. K.; Bligaard, T.; Logadottir, A.
  • Journal of The Electrochemical Society, Vol. 152, Issue 3
  • DOI: 10.1149/1.1856988

Conducting MoS 2 Nanosheets as Catalysts for Hydrogen Evolution Reaction
journal, November 2013

  • Voiry, Damien; Salehi, Maryam; Silva, Rafael
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403661s

Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution
journal, July 2017


Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts
journal, January 2013

  • Chen, Wei-Fu; Muckerman, James T.; Fujita, Etsuko
  • Chemical Communications, Vol. 49, Issue 79
  • DOI: 10.1039/c3cc44076a

Mapping the electrocatalytic activity of MoS 2 across its amorphous to crystalline transition
journal, January 2017

  • Choi, Yun-Hyuk; Cho, Junsang; Lunsford, Allen M.
  • Journal of Materials Chemistry A, Vol. 5, Issue 10
  • DOI: 10.1039/C6TA10316B

Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction
journal, February 2014

  • Li, Dong Jun; Maiti, Uday Narayan; Lim, Joonwon
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404108a

Highly Efficient Hydrogen Evolution Reaction Using Crystalline Layered Three-Dimensional Molybdenum Disulfides Grown on Graphene Film
journal, January 2016


High-Quality Black Phosphorus Atomic Layers by Liquid-Phase Exfoliation
journal, February 2015

  • Yasaei, Poya; Kumar, Bijandra; Foroozan, Tara
  • Advanced Materials, Vol. 27, Issue 11
  • DOI: 10.1002/adma.201405150

Molecular aspects of the H2 activation on MoS2 based catalysts — the role of dynamic surface arrangements
journal, December 2000

  • Byskov, Line S.; Bollinger, Mikkel; Nørskov, Jens K.
  • Journal of Molecular Catalysis A: Chemical, Vol. 163, Issue 1-2
  • DOI: 10.1016/S1381-1169(00)00404-0

Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction
journal, December 2013

  • Kumar, Bijandra; Asadi, Mohammad; Pisasale, Davide
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3819

Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
journal, October 2012

  • Kibsgaard, Jakob; Chen, Zhebo; Reinecke, Benjamin N.
  • Nature Materials, Vol. 11, Issue 11, p. 963-969
  • DOI: 10.1038/nmat3439

Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters
journal, January 2014

  • Kibsgaard, Jakob; Jaramillo, Thomas F.; Besenbacher, Flemming
  • Nature Chemistry, Vol. 6, Issue 3
  • DOI: 10.1038/nchem.1853

Ultrastable In-Plane 1T-2H MoS 2 Heterostructures for Enhanced Hydrogen Evolution Reaction
journal, July 2018


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Hydrogen on molybdenum disulfide: theory of its heterolytic and homolytic chemisorption
journal, February 1988

  • Anderson, Alfred B.; Al-Saigh, Zeki Y.; Hall, W. Keith
  • The Journal of Physical Chemistry, Vol. 92, Issue 3
  • DOI: 10.1021/j100314a042

Electrochemistry and photochemistry of MoS2 layer crystals. I
journal, August 1977

  • Tributsch, H.; Bennett, J. C.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 81, Issue 1
  • DOI: 10.1016/S0022-0728(77)80363-X

Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution
journal, August 2016


Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations
journal, October 2010

  • Skúlason, Egill; Tripkovic, Vladimir; Björketun, Mårten E.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 42
  • DOI: 10.1021/jp1048887

Edge-Oriented MoS 2 Nanoporous Films as Flexible Electrodes for Hydrogen Evolution Reactions and Supercapacitor Devices
journal, October 2014


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

The Crystal Structure of [Fe]-Hydrogenase Reveals the Geometry of the Active Site
journal, July 2008


Ultrafast lithium energy storage enabled by interfacial construction of interlayer-expanded MoS 2 /N-doped carbon nanowires
journal, January 2018

  • Sun, Huanhuan; Wang, Jian-Gan; Zhang, Yu
  • Journal of Materials Chemistry A, Vol. 6, Issue 27
  • DOI: 10.1039/C8TA04852E

Layer-Dependent Electrocatalysis of MoS 2 for Hydrogen Evolution
journal, January 2014

  • Yu, Yifei; Huang, Sheng-Yang; Li, Yanpeng
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl403620g

CoSe 2 necklace-like nanowires supported by carbon fiber paper: a 3D integrated electrode for the hydrogen evolution reaction
journal, January 2015

  • Wang, Ke; Xi, Dan; Zhou, Chongjian
  • Journal of Materials Chemistry A, Vol. 3, Issue 18
  • DOI: 10.1039/C5TA01143D

Hierarchical molybdenum carbide/N-doped carbon as efficient electrocatalyst for hydrogen evolution reaction in alkaline solution
journal, September 2018


Advanced spatially resolved EELS in the STEM
journal, June 1999


Towards the computational design of solid catalysts
journal, April 2009

  • Nørskov, J.; Bligaard, T.; Rossmeisl, J.
  • Nature Chemistry, Vol. 1, Issue 1, p. 37-46
  • DOI: 10.1038/nchem.121

Carbon-Tailored Semimetal MoP as an Efficient Hydrogen Evolution Electrocatalyst in Both Alkaline and Acid Media
journal, June 2018


Monolayer MoS 2 Films Supported by 3D Nanoporous Metals for High-Efficiency Electrocatalytic Hydrogen Production
journal, October 2014


Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium–Oxygen Batteries
journal, January 2016


Silver Supported on Titania as an Active Catalyst for Electrochemical Carbon Dioxide Reduction
journal, January 2014


Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Aqueous CO 2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles
journal, November 2012

  • Chen, Yihong; Li, Christina W.; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 49
  • DOI: 10.1021/ja309317u

Trends in the Exchange Current for Hydrogen Evolution.
journal, June 2005


Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations
journal, November 2010

  • Skúlason, Egill; Tripkovic, Vladimir; Björketun, Mårten E.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 50
  • DOI: 10.1021/jp110913n

Porous Molybdenum Phosphide Nano-Octahedrons Derived from Confined Phosphorization in UIO-66 for Efficient Hydrogen Evolution
journal, July 2016


Layer-dependent Electrocatalysis of MoS2 for Hydrogen Evolution
text, January 2013


Works referencing / citing this record:

Multifunctional Transition Metal‐Based Phosphides in Energy‐Related Electrocatalysis
journal, September 2019

  • Li, Yang; Dong, Zihao; Jiao, Lifang
  • Advanced Energy Materials, Vol. 10, Issue 11
  • DOI: 10.1002/aenm.201902104

Boron‐Induced Electronic‐Structure Reformation of CoP Nanoparticles Drives Enhanced pH‐Universal Hydrogen Evolution
journal, January 2020


Boron‐Induced Electronic‐Structure Reformation of CoP Nanoparticles Drives Enhanced pH‐Universal Hydrogen Evolution
journal, January 2020

  • Cao, Erping; Chen, Zhimin; Wu, Hao
  • Angewandte Chemie International Edition, Vol. 59, Issue 10
  • DOI: 10.1002/anie.201915254

Sulfur doping enhanced desorption of intermediates on NiCoP for efficient alkaline hydrogen evolution
journal, January 2020