skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dopant-Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal

Abstract

Li7La3Zr2O12 (LLZO) garnet-based materials doped with Al, Nb or Ta to stabilize the Li+-conductive cubic phase are a particularly promising class of solid electrolytes for all-solid-state lithium metal batteries. Understanding of the intrinsic reactivity between solid electrolytes and relevant electrode materials is crucial to developing high voltage solid-state batteries with long lifetimes. Using a novel, surface science-based approach to characterize the intrinsic reactivity of the Li-solid electrolyte interface, we determine that, surprisingly, some degree of Zr reduction takes place for all three dopant types, with the extent of reduction increasing as Ta < Nb < Al. Significant reduction of Nb also takes place for Nb-doped LLZO, with electrochemical impedance spectroscopy (EIS) of Li||Nb-LLZO||Li symmetric cells further revealing significant increases in impedance with time and suggesting that the Nb reduction propagates into the bulk. Density functional theory (DFT) calculations reveal that Nb-doped material shows a strong preference for Nb dopants towards the interface between LLZO and Li, while Ta does not exhibit a similar preference. Furthermore EIS and DFT results, coupled with the observed reduction of Zr at the interface, are consistent with the formation of an “oxygen-deficient interphase” (ODI) layer whose structure determines the stability of the LLZO-Li interface.

Authors:
 [1]; ORCiD logo [1];  [1];  [1];  [2];  [2];  [2];  [3];  [1];  [1];  [3];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States)
  3. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V). Battery Materials Research (BMR) Program; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; USDOE
OSTI Identifier:
1508374
Alternate Identifier(s):
OSTI ID: 1494204
Grant/Contract Number:  
AC02-06CH11357; AC02‐06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 9; Journal Issue: 12; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Li metal; buried interface; solid electrolytes; solid‐state batteries; surface science

Citation Formats

Zhu, Yisi, Connell, Justin G., Tepavcevic, Sanja, Zapol, Peter, Garcia‐Mendez, Regina, Taylor, Nathan J., Sakamoto, Jeff, Ingram, Brian J., Curtiss, Larry A., Freeland, John W., Fong, Dillon D., and Markovic, Nenad M. Dopant-Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal. United States: N. p., 2019. Web. doi:10.1002/aenm.201803440.
Zhu, Yisi, Connell, Justin G., Tepavcevic, Sanja, Zapol, Peter, Garcia‐Mendez, Regina, Taylor, Nathan J., Sakamoto, Jeff, Ingram, Brian J., Curtiss, Larry A., Freeland, John W., Fong, Dillon D., & Markovic, Nenad M. Dopant-Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal. United States. doi:10.1002/aenm.201803440.
Zhu, Yisi, Connell, Justin G., Tepavcevic, Sanja, Zapol, Peter, Garcia‐Mendez, Regina, Taylor, Nathan J., Sakamoto, Jeff, Ingram, Brian J., Curtiss, Larry A., Freeland, John W., Fong, Dillon D., and Markovic, Nenad M. Sun . "Dopant-Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal". United States. doi:10.1002/aenm.201803440. https://www.osti.gov/servlets/purl/1508374.
@article{osti_1508374,
title = {Dopant-Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal},
author = {Zhu, Yisi and Connell, Justin G. and Tepavcevic, Sanja and Zapol, Peter and Garcia‐Mendez, Regina and Taylor, Nathan J. and Sakamoto, Jeff and Ingram, Brian J. and Curtiss, Larry A. and Freeland, John W. and Fong, Dillon D. and Markovic, Nenad M.},
abstractNote = {Li7La3Zr2O12 (LLZO) garnet-based materials doped with Al, Nb or Ta to stabilize the Li+-conductive cubic phase are a particularly promising class of solid electrolytes for all-solid-state lithium metal batteries. Understanding of the intrinsic reactivity between solid electrolytes and relevant electrode materials is crucial to developing high voltage solid-state batteries with long lifetimes. Using a novel, surface science-based approach to characterize the intrinsic reactivity of the Li-solid electrolyte interface, we determine that, surprisingly, some degree of Zr reduction takes place for all three dopant types, with the extent of reduction increasing as Ta < Nb < Al. Significant reduction of Nb also takes place for Nb-doped LLZO, with electrochemical impedance spectroscopy (EIS) of Li||Nb-LLZO||Li symmetric cells further revealing significant increases in impedance with time and suggesting that the Nb reduction propagates into the bulk. Density functional theory (DFT) calculations reveal that Nb-doped material shows a strong preference for Nb dopants towards the interface between LLZO and Li, while Ta does not exhibit a similar preference. Furthermore EIS and DFT results, coupled with the observed reduction of Zr at the interface, are consistent with the formation of an “oxygen-deficient interphase” (ODI) layer whose structure determines the stability of the LLZO-Li interface.},
doi = {10.1002/aenm.201803440},
journal = {Advanced Energy Materials},
number = 12,
volume = 9,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Elastic Properties of the Solid Electrolyte Li 7 La 3 Zr 2 O 12 (LLZO)
journal, December 2015


Interface-Engineered All-Solid-State Li-Ion Batteries Based on Garnet-Type Fast Li + Conductors
journal, July 2016

  • van den Broek, Jan; Afyon, Semih; Rupp, Jennifer L. M.
  • Advanced Energy Materials, Vol. 6, Issue 19
  • DOI: 10.1002/aenm.201600736

Projector augmented-wave method
journal, December 1994


New horizons for inorganic solid state ion conductors
journal, January 2018

  • Zhang, Zhizhen; Shao, Yuanjun; Lotsch, Bettina
  • Energy & Environmental Science, Vol. 11, Issue 8
  • DOI: 10.1039/C8EE01053F

Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium
journal, March 2013


Lithium Distribution in Aluminum-Free Cubic Li 7 La 3 Zr 2 O 12
journal, August 2011

  • Xie, Hui; Alonso, Jose A.; Li, Yutao
  • Chemistry of Materials, Vol. 23, Issue 16
  • DOI: 10.1021/cm201671k

Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li 7 La 3 Zr 2 O 12 Electrolyte and LiCoO 2 Cathode
journal, July 2018


A Tale of Two Sites: On Defining the Carrier Concentration in Garnet-Based Ionic Conductors for Advanced Li Batteries
journal, March 2015

  • Thompson, Travis; Sharafi, Asma; Johannes, Michelle D.
  • Advanced Energy Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aenm.201500096

Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density
journal, January 2016


Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12
journal, May 2012


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes
journal, December 2016


The Migration of Metal and Oxygen during Anodic Film Formation
journal, January 1965

  • Davies, J. A.; Domeij, B.; Pringle, J. P. S.
  • Journal of The Electrochemical Society, Vol. 112, Issue 7
  • DOI: 10.1149/1.2423662

High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets
journal, May 2015


Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid
journal, July 2017


Crystal Orientation-Dependent Reactivity of Oxide Surfaces in Contact with Lithium Metal
journal, April 2018

  • Connell, Justin G.; Zhu, Yisi; Zapol, Peter
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 20
  • DOI: 10.1021/acsami.8b03078

Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte
journal, September 2011


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Electroceramics: Characterization by Impedance Spectroscopy
journal, March 1990

  • Irvine, John T. S.; Sinclair, Derek C.; West, Anthony R.
  • Advanced Materials, Vol. 2, Issue 3
  • DOI: 10.1002/adma.19900020304

First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
journal, January 2016

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • Journal of Materials Chemistry A, Vol. 4, Issue 9
  • DOI: 10.1039/C5TA08574H

Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer
journal, April 2017


An in situ element permeation constructed high endurance Li–LLZO interface at high current densities
journal, January 2018

  • Lu, Yang; Huang, Xiao; Ruan, Yadong
  • Journal of Materials Chemistry A, Vol. 6, Issue 39
  • DOI: 10.1039/C8TA07241H

Electrochemical Stability of Li 10 GeP 2 S 12 and Li 7 La 3 Zr 2 O 12 Solid Electrolytes
journal, January 2016

  • Han, Fudong; Zhu, Yizhou; He, Xingfeng
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201501590

Correlating the interface resistance and surface adhesion of the Li metal-solid electrolyte interface
journal, February 2018


Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO 2 and Garnet-Li 7 La 3 Zr 2 O 12
journal, October 2016


Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature
journal, April 2013


Electrochemical impedance of electrolyte/electrode interfaces of lithium-ion rechargeable batteries
journal, January 2006


The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes
journal, January 2014

  • Cheng, Lei; Crumlin, Ethan J.; Chen, Wei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 34
  • DOI: 10.1039/C4CP02921F

Initial stages of oxide formation on the Zr surface at low oxygen pressure: An in situ FIM and XPS study
journal, December 2015


Garnet Electrolytes for Solid State Batteries: Visualization of Moisture-Induced Chemical Degradation and Revealing Its Impact on the Li-Ion Dynamics
journal, May 2018


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

A solid future for battery development
journal, September 2016


The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries
journal, January 2018

  • Wu, Bingbin; Wang, Shanyu; Lochala, Joshua
  • Energy & Environmental Science, Vol. 11, Issue 7
  • DOI: 10.1039/C8EE00540K

Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li 7 La 3 Zr 2 O 12 Solid Electrolytes
journal, August 2015

  • Cheng, Lei; Wu, Cheng Hao; Jarry, Angelique
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 32
  • DOI: 10.1021/acsami.5b02528

Interfacial Stability of Li Metal–Solid Electrolyte Elucidated via in Situ Electron Microscopy
journal, October 2016


Impact of air exposure and surface chemistry on Li–Li 7 La 3 Zr 2 O 12 interfacial resistance
journal, January 2017

  • Sharafi, Asma; Yu, Seungho; Naguib, Michael
  • Journal of Materials Chemistry A, Vol. 5, Issue 26
  • DOI: 10.1039/C7TA03162A

On the determination of atomic charge via ESCA including application to organometallics
journal, February 1996

  • Sleigh, Christopher; Pijpers, A. P.; Jaspers, Alex
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 77, Issue 1
  • DOI: 10.1016/0368-2048(95)02392-5

Electrochemical Stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against Metallic Lithium
journal, May 2016


Resolving the Grain Boundary and Lattice Impedance of Hot-Pressed Li 7 La 3 Zr 2 O 12 Garnet Electrolytes
journal, July 2013

  • Tenhaeff, Wyatt E.; Rangasamy, Ezhiyl; Wang, Yangyang
  • ChemElectroChem, Vol. 1, Issue 2
  • DOI: 10.1002/celc.201300022

Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li 7 La 3 Zr 2 O 12
journal, September 2017


Electrochemical Window of the Li-Ion Solid Electrolyte Li 7 La 3 Zr 2 O 12
journal, January 2017


Effect of Pore Connectivity on Li Dendrite Propagation within LLZO Electrolytes Observed with Synchrotron X-ray Tomography
journal, March 2018


The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12
journal, January 2012

  • Rangasamy, Ezhiyl; Wolfenstine, Jeff; Sakamoto, Jeffrey
  • Solid State Ionics, Vol. 206, p. 28-32
  • DOI: 10.1016/j.ssi.2011.10.022

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


    Works referencing / citing this record:

    Li/Garnet Interface Stabilization by Thermal‐Decomposition Vapor Deposition of an Amorphous Carbon Layer
    journal, March 2020

    • Feng, Wuliang; Dong, Xiaoli; Zhang, Xiang
    • Angewandte Chemie International Edition, Vol. 59, Issue 13
    • DOI: 10.1002/anie.201915900