skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

Abstract

Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li 7La 3Zr 2O 12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 -3 to 10 -4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm 2 for the surface-engineered garnet/Li. Li 7La 2.75Ca 0.25Zr 1.75Nb 0.25O 12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybridmore » electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.« less

Authors:
 [1];  [2];  [2];  [2];  [2]; ORCiD logo [2];  [2];  [2];  [2];  [2]; ORCiD logo [2];  [2];  [2]
  1. (Kelvin) [Univ. of Maryland, College Park, MD (United States)
  2. Univ. of Maryland, College Park, MD (United States)
Publication Date:
Research Org.:
Univ. of Maryland, College Park, MD (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1425393
Grant/Contract Number:  
EE0006860
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 3; Journal Issue: 4; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Fu, Kun, Gong, Yunhui, Liu, Boyang, Xu, Shaomao, Yao, Yonggang, Luo, Wei, Wang, Chengwei, Lacey, Steven D., Dai, Jiaqi, Chen, Yanan, Mo, Yifei, Wachsman, Eric, and Hu, Liangbing. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. United States: N. p., 2017. Web. doi:10.1126/sciadv.1601659.
Fu, Kun, Gong, Yunhui, Liu, Boyang, Xu, Shaomao, Yao, Yonggang, Luo, Wei, Wang, Chengwei, Lacey, Steven D., Dai, Jiaqi, Chen, Yanan, Mo, Yifei, Wachsman, Eric, & Hu, Liangbing. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. United States. doi:10.1126/sciadv.1601659.
Fu, Kun, Gong, Yunhui, Liu, Boyang, Xu, Shaomao, Yao, Yonggang, Luo, Wei, Wang, Chengwei, Lacey, Steven D., Dai, Jiaqi, Chen, Yanan, Mo, Yifei, Wachsman, Eric, and Hu, Liangbing. Fri . "Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface". United States. doi:10.1126/sciadv.1601659. https://www.osti.gov/servlets/purl/1425393.
@article{osti_1425393,
title = {Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface},
author = {Fu, Kun and Gong, Yunhui and Liu, Boyang and Xu, Shaomao and Yao, Yonggang and Luo, Wei and Wang, Chengwei and Lacey, Steven D. and Dai, Jiaqi and Chen, Yanan and Mo, Yifei and Wachsman, Eric and Hu, Liangbing},
abstractNote = {Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10-3 to 10-4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm2 for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.},
doi = {10.1126/sciadv.1601659},
journal = {Science Advances},
number = 4,
volume = 3,
place = {United States},
year = {2017},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 108 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A high performance lithium-ion sulfur battery based on a Li 2 S cathode using a dual-phase electrolyte
journal, January 2015

  • Wang, Lina; Wang, Yonggang; Xia, Yongyao
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C5EE00058K

Improving battery safety by early detection of internal shorting with a bifunctional separator
journal, October 2014

  • Wu, Hui; Zhuo, Denys; Kong, Desheng
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6193

Interface-Engineered All-Solid-State Li-Ion Batteries Based on Garnet-Type Fast Li + Conductors
journal, July 2016

  • van den Broek, Jan; Afyon, Semih; Rupp, Jennifer L. M.
  • Advanced Energy Materials, Vol. 6, Issue 19
  • DOI: 10.1002/aenm.201600736

A review of lithium and non-lithium based solid state batteries
journal, May 2015


Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes
journal, January 2015

  • Cheng, Lei; Chen, Wei; Kunz, Martin
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 3
  • DOI: 10.1021/am508111r

Solid Electrolyte: the Key for High-Voltage Lithium Batteries
journal, October 2014

  • Li, Juchuan; Ma, Cheng; Chi, Miaofang
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201401408

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


A Tale of Two Sites: On Defining the Carrier Concentration in Garnet-Based Ionic Conductors for Advanced Li Batteries
journal, March 2015

  • Thompson, Travis; Sharafi, Asma; Johannes, Michelle D.
  • Advanced Energy Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aenm.201500096

Hybrid Lithium–Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte
journal, July 2015

  • Yu, Xingwen; Bi, Zhonghe; Zhao, Feng
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 30
  • DOI: 10.1021/acsami.5b04209

Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density
journal, January 2016


A dendrite-suppressing composite ion conductor from aramid nanofibres
journal, January 2015

  • Tung, Siu-On; Ho, Szushen; Yang, Ming
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7152

Interfacial Challenges in Solid-State Li Ion Batteries
journal, October 2015

  • Luntz, Alan C.; Voss, Johannes; Reuter, Karsten
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b02352

All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts
journal, November 2010

  • Oudenhoven, Jos F. M.; Baggetto, Loïc.; Notten, Peter H. L.
  • Advanced Energy Materials, Vol. 1, Issue 1
  • DOI: 10.1002/aenm.201000002

High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets
journal, May 2015


Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
journal, June 2016

  • Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1600422113

First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
journal, January 2016

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • Journal of Materials Chemistry A, Vol. 4, Issue 9
  • DOI: 10.1039/C5TA08574H

A Thermally Conductive Separator for Stable Li Metal Anodes
journal, August 2015


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Dendritic growth mechanisms in lithium/polymer cells
journal, September 1999


Electrochemical Stability of Li 10 GeP 2 S 12 and Li 7 La 3 Zr 2 O 12 Solid Electrolytes
journal, January 2016

  • Han, Fudong; Zhu, Yizhou; He, Xingfeng
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201501590

Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering
journal, February 2014


Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes
journal, August 2005


Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”
journal, January 2011

  • Buschmann, Henrik; Dölle, Janis; Berendts, Stefan
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 43
  • DOI: 10.1039/c1cp22108f

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Effect of Simultaneous Substitution of Alkali Earth Metals and Nb in Li7La3Zr2O12 on Lithium-Ion Conductivity
journal, January 2013

  • Kihira, Y.; Ohta, S.; Imagawa, H.
  • ECS Electrochemistry Letters, Vol. 2, Issue 7
  • DOI: 10.1149/2.001307eel

All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range
journal, August 2015

  • Kitaura, Hirokazu; Zhou, Haoshen
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep13271

A shuttle effect free lithium sulfur battery based on a hybrid electrolyte
journal, January 2014

  • Wang, Qingsong; Jin, Jun; Wu, Xiangwei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 39
  • DOI: 10.1039/C4CP03694H

Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts
journal, March 2016

  • Busche, Martin R.; Drossel, Thomas; Leichtweiss, Thomas
  • Nature Chemistry, Vol. 8, Issue 5
  • DOI: 10.1038/nchem.2470

The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes
journal, January 2014

  • Cheng, Lei; Crumlin, Ethan J.; Chen, Wei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 34
  • DOI: 10.1039/C4CP02921F

Li + -Ion Transfer through the Interface between Li + -Ion Conductive Ceramic Electrolyte and Li + -Ion-Concentrated Propylene Carbonate Solution
journal, October 2009

  • Sagane, Fumihiro; Abe, Takeshi; Ogumi, Zempachi
  • The Journal of Physical Chemistry C, Vol. 113, Issue 46
  • DOI: 10.1021/jp908623c

Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators
journal, April 2012

  • Ryou, Myung-Hyun; Lee, Dong Jin; Lee, Je-Nam
  • Advanced Energy Materials, Vol. 2, Issue 6
  • DOI: 10.1002/aenm.201100687

Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

Compatibility of Li[sub 7]La[sub 3]Zr[sub 2]O[sub 12] Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode
journal, January 2010

  • Kotobuki, Masashi; Munakata, Hirokazu; Kanamura, Kiyoshi
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3474232

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Electrical properties of amorphous lithium electrolyte thin films
journal, July 1992


Li−Fe−P−O 2 Phase Diagram from First Principles Calculations
journal, February 2008

  • Ong, Shyue Ping; Wang, Lei; Kang, Byoungwoo
  • Chemistry of Materials, Vol. 20, Issue 5
  • DOI: 10.1021/cm702327g

Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

A Self-Assembled Breathing Interface for All-Solid-State Ceramic Lithium Batteries
journal, January 2004

  • Kanno, Ryoji; Murayama, Masahiro; Inada, Taro
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 12
  • DOI: 10.1149/1.1809553

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Metallic anodes for next generation secondary batteries
journal, January 2013

  • Kim, Hansu; Jeong, Goojin; Kim, Young-Ugk
  • Chemical Society Reviews, Vol. 42, Issue 23
  • DOI: 10.1039/c3cs60177c

Lithium batteries: Status, prospects and future
journal, May 2010


Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
journal, January 2014

  • Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana
  • Chemical Society Reviews, Vol. 43, Issue 13
  • DOI: 10.1039/c4cs00020j

Interface Stability in Solid-State Batteries
journal, December 2015


Polysulfide-Shuttle Control in Lithium-Sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON-Type Solid Electrolyte
journal, August 2016

  • Yu, Xingwen; Bi, Zhonghe; Zhao, Feng
  • Advanced Energy Materials, Vol. 6, Issue 24
  • DOI: 10.1002/aenm.201601392

Origin of the enhanced Li + ionic conductivity in Gd +3 substituted Li 5+2x La 3 Nb 2−x Gd x O 12 lithium conducting garnets
journal, January 2015

  • Ahmad, Mohamad M.; Al-Quaimi, Munirah M.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 24
  • DOI: 10.1039/C5CP02393A

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

    Works referencing / citing this record:

    In situ X-ray photoelectron spectroscopy investigation of the solid electrolyte interphase in a Li/Li6.4Ga0.2La3Zr2O12/LiFePO4 all-solid-state battery
    journal, June 2019

    • Liu, Zhen; Li, Guozhu; Borodin, Andriy
    • Journal of Solid State Electrochemistry, Vol. 23, Issue 7
    • DOI: 10.1007/s10008-019-04296-4

    Sol Gel vs Solid State Synthesis of the Fast Lithium-Ion Conducting Solid State Electrolyte Li 7 La 3 Zr 2 O 12 Substituted with Iron
    journal, January 2019

    • Paulus, Anja; Kammler, Simon; Heuer, Sabrina
    • Journal of The Electrochemical Society, Vol. 166, Issue 3
    • DOI: 10.1149/2.0641903jes

    High Uptake and Fast Transportation of LiPF 6 in a Porous Aromatic Framework for Solid‐State Li‐Ion Batteries
    journal, December 2019


    Solid‐State Lithium Batteries: Bipolar Design, Fabrication, and Electrochemistry
    journal, May 2019

    • Jung, Kyu‐Nam; Shin, Hyun‐Seop; Park, Min‐Sik
    • ChemElectroChem, Vol. 6, Issue 15
    • DOI: 10.1002/celc.201900736

    Research Progress of the Solid State Lithium-Sulfur Batteries
    journal, October 2019


    High Uptake and Fast Transportation of LiPF 6 in a Porous Aromatic Framework for Solid‐State Li‐Ion Batteries
    journal, December 2019


    Solid‐State Lithium Batteries: Bipolar Design, Fabrication, and Electrochemistry
    journal, May 2019

    • Jung, Kyu‐Nam; Shin, Hyun‐Seop; Park, Min‐Sik
    • ChemElectroChem, Vol. 6, Issue 15
    • DOI: 10.1002/celc.201900736

    In situ X-ray photoelectron spectroscopy investigation of the solid electrolyte interphase in a Li/Li6.4Ga0.2La3Zr2O12/LiFePO4 all-solid-state battery
    journal, June 2019

    • Liu, Zhen; Li, Guozhu; Borodin, Andriy
    • Journal of Solid State Electrochemistry, Vol. 23, Issue 7
    • DOI: 10.1007/s10008-019-04296-4

    Review—Li Metal Anode in Working Lithium-Sulfur Batteries
    journal, June 2017

    • Cheng, Xin-Bing; Huang, Jia-Qi; Zhang, Qiang
    • Journal of The Electrochemical Society, Vol. 165, Issue 1
    • DOI: 10.1149/2.0111801jes

    Sol Gel vs Solid State Synthesis of the Fast Lithium-Ion Conducting Solid State Electrolyte Li 7 La 3 Zr 2 O 12 Substituted with Iron
    journal, January 2019

    • Paulus, Anja; Kammler, Simon; Heuer, Sabrina
    • Journal of The Electrochemical Society, Vol. 166, Issue 3
    • DOI: 10.1149/2.0641903jes

    Research Progress of the Solid State Lithium-Sulfur Batteries
    journal, October 2019