DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation

Abstract

To suppress dendrite formation in lithium metal batteries, high cation transference number electrolytes that reduce electrode polarization are highly desirable, but rarely available using conventional liquid electrolytes. Here, we show that liquid electrolytes increase their cation transference numbers (e.g., ~0.2 to >0.70) when confined to a structurally rigid polymer host whose pores are on a similar length scale (0.5–2 nm) as the Debye screening length in the electrolyte, which results in a diffuse electrolyte double layer at the polymer–electrolyte interface that retains counterions and reject co-ions from the electrolyte due to their larger size. Lithium anodes coated with ~1 μm thick overlayers of the polymer host exhibit both a low area-specific resistance and clear dendrite-suppressing character, as evident from their performance in Li–Li and Li–Cu cells as well as in post-mortem analysis of the anode’s morphology after cycling. High areal capacity Li–S cells (4.9 mg cm–2; 8.2 mAh cm–2) implementing these high transference number polymer-hosted liquid electrolytes were remarkably stable, considering ~24 μm of lithium was electroreversibly deposited in each cycle at a C-rate of 0.2. In conclusion, we further identified a scalable manufacturing path for these polymer-coated lithium electrodes, which are drop-in components for lithium metal battery manufacturing.

Authors:
 [1];  [1];  [1];  [2];  [3];  [3]; ORCiD logo [3]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States)
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1507408
Alternate Identifier(s):
OSTI ID: 1634042
Report Number(s):
SAND-2019-3255J
Journal ID: ISSN 1530-6984; 673712
Grant/Contract Number:  
AC04-94AL85000; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 19; Journal Issue: 2; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; electrified transportation; High cation transference number; lithium anode protection; lithium−sulfur battery; nanoionics; polymer electrolyte

Citation Formats

Ma, Lin, Fu, Chengyin, Li, Longjun, Mayilvahanan, Karthik S., Watkins, Tylan, Perdue, Brian R., Zavadil, Kevin R., and Helms, Brett A. Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation. United States: N. p., 2019. Web. doi:10.1021/acs.nanolett.8b05101.
Ma, Lin, Fu, Chengyin, Li, Longjun, Mayilvahanan, Karthik S., Watkins, Tylan, Perdue, Brian R., Zavadil, Kevin R., & Helms, Brett A. Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation. United States. https://doi.org/10.1021/acs.nanolett.8b05101
Ma, Lin, Fu, Chengyin, Li, Longjun, Mayilvahanan, Karthik S., Watkins, Tylan, Perdue, Brian R., Zavadil, Kevin R., and Helms, Brett A. Wed . "Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation". United States. https://doi.org/10.1021/acs.nanolett.8b05101. https://www.osti.gov/servlets/purl/1507408.
@article{osti_1507408,
title = {Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation},
author = {Ma, Lin and Fu, Chengyin and Li, Longjun and Mayilvahanan, Karthik S. and Watkins, Tylan and Perdue, Brian R. and Zavadil, Kevin R. and Helms, Brett A.},
abstractNote = {To suppress dendrite formation in lithium metal batteries, high cation transference number electrolytes that reduce electrode polarization are highly desirable, but rarely available using conventional liquid electrolytes. Here, we show that liquid electrolytes increase their cation transference numbers (e.g., ~0.2 to >0.70) when confined to a structurally rigid polymer host whose pores are on a similar length scale (0.5–2 nm) as the Debye screening length in the electrolyte, which results in a diffuse electrolyte double layer at the polymer–electrolyte interface that retains counterions and reject co-ions from the electrolyte due to their larger size. Lithium anodes coated with ~1 μm thick overlayers of the polymer host exhibit both a low area-specific resistance and clear dendrite-suppressing character, as evident from their performance in Li–Li and Li–Cu cells as well as in post-mortem analysis of the anode’s morphology after cycling. High areal capacity Li–S cells (4.9 mg cm–2; 8.2 mAh cm–2) implementing these high transference number polymer-hosted liquid electrolytes were remarkably stable, considering ~24 μm of lithium was electroreversibly deposited in each cycle at a C-rate of 0.2. In conclusion, we further identified a scalable manufacturing path for these polymer-coated lithium electrodes, which are drop-in components for lithium metal battery manufacturing.},
doi = {10.1021/acs.nanolett.8b05101},
journal = {Nano Letters},
number = 2,
volume = 19,
place = {United States},
year = {Wed Jan 23 00:00:00 EST 2019},
month = {Wed Jan 23 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 50 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Performance and cost of materials for lithium-based rechargeable automotive batteries
journal, April 2018


Batteries and fuel cells for emerging electric vehicle markets
journal, April 2018


Interphases in Lithium–Sulfur Batteries: Toward Deployable Devices with Competitive Energy Density and Stability
journal, August 2018


Performance Metrics Required of Next-Generation Batteries to Make a Practical Electric Semi Truck
journal, June 2017


Quantifying the Economic Case for Electric Semi-Trucks
journal, December 2018


Performance Metrics Required of Next-Generation Batteries to Electrify Vertical Takeoff and Landing (VTOL) Aircraft
journal, November 2018


Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors
journal, September 2012

  • Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A.
  • Angewandte Chemie International Edition, Vol. 51, Issue 40
  • DOI: 10.1002/anie.201201429

Promise and reality of post-lithium-ion batteries with high energy densities
journal, March 2016


Review on Li-Sulfur Battery Systems: an Integral Perspective
journal, May 2015

  • Rosenman, Ariel; Markevich, Elena; Salitra, Gregory
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500212

Aprotic and Aqueous Li–O2 Batteries
journal, April 2014

  • Lu, Jun; Li, Li; Park, Jin-Bum
  • Chemical Reviews, Vol. 114, Issue 11, p. 5611-5640
  • DOI: 10.1021/cr400573b

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Phase-Field Simulations of Lithium Dendrite Growth with Open-Source Software
journal, June 2018


Steady state current flow in solid binary electrolyte cells
journal, June 1987

  • Bruce, Peter G.; Vincent, Colin A.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 225, Issue 1-2
  • DOI: 10.1016/0022-0728(87)80001-3

Electrochemical measurement of transference numbers in polymer electrolytes
journal, December 1987


Effect of Molecular Weight and Salt Concentration on Ion Transport and the Transference Number in Polymer Electrolytes
journal, October 2015


Dendrite Growth in Lithium/Polymer Systems
journal, January 2003

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 150, Issue 10
  • DOI: 10.1149/1.1606686

Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes
journal, February 2015

  • Lu, Yingying; Tikekar, Mukul; Mohanty, Ritesh
  • Advanced Energy Materials, Vol. 5, Issue 9
  • DOI: 10.1002/aenm.201402073

High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites
journal, March 2013

  • Schaefer, Jennifer L.; Yanga, Dennis A.; Archer, Lynden A.
  • Chemistry of Materials, Vol. 25, Issue 6
  • DOI: 10.1021/cm303091j

Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature
journal, September 2016


Harnessing the Power of Plastics: Nanostructured Polymer Systems in Lithium-Ion Batteries
journal, August 2017


Architected Macroporous Polyelectrolytes That Suppress Dendrite Formation during High-Rate Lithium Metal Electrodeposition
journal, September 2018


Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries
journal, August 2015


A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Transference Number Approaching Unity in Nanocomposite Electrolytes
journal, December 2006


Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes
journal, December 2017


Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1
journal, December 2008


Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1)
journal, June 2008


Molecular Simulations of PIM-1-like Polymers of Intrinsic Microporosity
journal, September 2011

  • Larsen, Gregory S.; Lin, Ping; Hart, Kyle E.
  • Macromolecules, Vol. 44, Issue 17
  • DOI: 10.1021/ma200345v

Understanding and controlling the chemical evolution and polysulfide-blocking ability of lithium–sulfur battery membranes cast from polymers of intrinsic microporosity
journal, January 2016

  • Doris, Sean E.; Ward, Ashleigh L.; Frischmann, Peter D.
  • Journal of Materials Chemistry A, Vol. 4, Issue 43
  • DOI: 10.1039/C6TA06401A

Hybrid Hairy Nanoparticle Electrolytes Stabilizing Lithium Metal Batteries
journal, March 2016


Design Principles of Functional Polymer Separators for High-Energy, Metal-Based Batteries
journal, December 2017


Infiltrated porous oxide monoliths as high lithium transference number electrolytes
journal, January 2016

  • Popovic, Jelena; Hasegawa, George; Moudrakovski, Igor
  • Journal of Materials Chemistry A, Vol. 4, Issue 19
  • DOI: 10.1039/C6TA01826B

Electrolyte Confinement Alters Lithium Electrodeposition
journal, December 2018


Quantification of Steady-State Ion Transport through Single Conical Nanopores and a Nonuniform Distribution of Surface Charges
journal, June 2013

  • Liu, Juan; Wang, Dengchao; Kvetny, Maksim
  • Langmuir, Vol. 29, Issue 27
  • DOI: 10.1021/la4009009

Surface Charge Density Determination of Single Conical Nanopores Based on Normalized Ion Current Rectification
journal, December 2011

  • Liu, Juan; Kvetny, Maksim; Feng, Jingyu
  • Langmuir, Vol. 28, Issue 2
  • DOI: 10.1021/la203106w

Impedance Characteristics of Amine Modified Single Glass Nanopores
journal, June 2010

  • Feng, Jingyu; Liu, Juan; Wu, Baohua
  • Analytical Chemistry, Vol. 82, Issue 11
  • DOI: 10.1021/ac100440z

History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces
journal, January 2015

  • Li, Yan; Wang, Dengchao; Kvetny, Maksim M.
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC02195A

Incorporating ionic size in the transport equations for charged nanopores
journal, October 2009

  • Cervera, Javier; Ramírez, Patricio; Manzanares, José A.
  • Microfluidics and Nanofluidics, Vol. 9, Issue 1
  • DOI: 10.1007/s10404-009-0518-2

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries
journal, October 2017


Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Stable Artificial Solid Electrolyte Interphases for Lithium Batteries
journal, May 2017


Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport
journal, September 2017

  • Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna
  • Angewandte Chemie International Edition, Vol. 56, Issue 42
  • DOI: 10.1002/anie.201707754

Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


New horizons for inorganic solid state ion conductors
journal, January 2018

  • Zhang, Zhizhen; Shao, Yuanjun; Lotsch, Bettina
  • Energy & Environmental Science, Vol. 11, Issue 8
  • DOI: 10.1039/C8EE01053F

Conductivity and transference number measurements on polymer electrolytes
journal, September 1988


Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
journal, February 2016

  • Cheng, Xin-Bing; Hou, Ting-Zheng; Zhang, Rui
  • Advanced Materials, Vol. 28, Issue 15
  • DOI: 10.1002/adma.201506124

Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement
journal, November 2016

  • Liu, Wei; Lin, Dingchang; Pei, Allen
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b08730

Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes
journal, October 2016


Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies
journal, January 2018

  • Li, Changyi; Meckler, Stephen M.; Smith, Zachary P.
  • Advanced Materials, Vol. 30, Issue 8
  • DOI: 10.1002/adma.201704953

Works referencing / citing this record:

Low‐Cost Self‐Assembled Oxide Separator for Rechargeable Batteries
journal, June 2019

  • Grundish, Nicholas S.; Amos, Charles D.; Agrawal, Ankit
  • Advanced Functional Materials, Vol. 29, Issue 35
  • DOI: 10.1002/adfm.201903550

Liquid Polydimethylsiloxane Grafting to Enable Dendrite‐Free Li Plating for Highly Reversible Li‐Metal Batteries
journal, May 2019

  • Meng, Junwei; Chu, Fulu; Hu, Jiulin
  • Advanced Functional Materials, Vol. 29, Issue 30
  • DOI: 10.1002/adfm.201902220

A Coaxial‐Interweaved Hybrid Lithium Metal Anode for Long‐Lifespan Lithium Metal Batteries
journal, August 2019

  • Chen, Xiao‐Ru; Li, Bo‐Quan; Zhu, Cheng
  • Advanced Energy Materials, Vol. 9, Issue 39
  • DOI: 10.1002/aenm.201901932