DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Amorphous-Phase-Mediated Crystallization of Ni Nanocrystals Revealed by High-Resolution Liquid-Phase Electron Microscopy

Abstract

Nonclassical features of crystallization in solution have been recently identified both experimentally and theoretically. In particular, an amorphous-phase-mediated pathway is found in various crystallization systems as an important route, different from the classical nucleation and growth model. In this paper, we utilize high-resolution in situ transmission electron microscopy with graphene liquid cells to study amorphous-phase-mediated formation of Ni nanocrystals. An amorphous phase is precipitated in the initial stage of the reaction. Within the amorphous particles, crystalline domains nucleate and eventually form nanocrystals. In addition, unique crystallization behaviors, such as formation of multiple domains and dislocation relaxation, are observed in amorphous-phase-mediated crystallization. Theoretical calculations confirm that surface interactions can induce amorphous precipitation of metal precursors, which is analogous to the surface-induced amorphous-to-crystalline transformation occurring in biomineralization. In conclusion, our results imply that an unexplored nonclassical growth mechanism is important for the formation of nanocrystals.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [5]; ORCiD logo [5]; ORCiD logo [4]; ORCiD logo [6]; ORCiD logo [2]; ORCiD logo [5]; ORCiD logo [7]; ORCiD logo [5]
  1. Institute for Basic Science (IBS), Seoul (Korea, Republic of); Seoul National Univ. (Korea, Republic of); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Konkuk University, Seoul (Korea, Republic of)
  3. Seoul (Korea, Republic of); Seoul National Univ. (Korea, Republic of)
  4. Hanyang University, Ansan (Korea, Republic of)
  5. Institute for Basic Science (IBS), Seoul (Korea, Republic of); Seoul National Univ. (Korea, Republic of)
  6. Seoul National Univ. (Korea, Republic of)
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1506398
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 141; Journal Issue: 2; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Yang, Jiwoong, Koo, Jahyun, Kim, Seulwoo, Jeon, Sungho, Choi, Back Kyu, Kwon, Sangwoo, Kim, Joodeok, Kim, Byung Hyo, Lee, Won Chul, Lee, Won Bo, Lee, Hoonkyung, Hyeon, Taeghwan, Ercius, Peter, and Park, Jungwon. Amorphous-Phase-Mediated Crystallization of Ni Nanocrystals Revealed by High-Resolution Liquid-Phase Electron Microscopy. United States: N. p., 2019. Web. doi:10.1021/jacs.8b11972.
Yang, Jiwoong, Koo, Jahyun, Kim, Seulwoo, Jeon, Sungho, Choi, Back Kyu, Kwon, Sangwoo, Kim, Joodeok, Kim, Byung Hyo, Lee, Won Chul, Lee, Won Bo, Lee, Hoonkyung, Hyeon, Taeghwan, Ercius, Peter, & Park, Jungwon. Amorphous-Phase-Mediated Crystallization of Ni Nanocrystals Revealed by High-Resolution Liquid-Phase Electron Microscopy. United States. https://doi.org/10.1021/jacs.8b11972
Yang, Jiwoong, Koo, Jahyun, Kim, Seulwoo, Jeon, Sungho, Choi, Back Kyu, Kwon, Sangwoo, Kim, Joodeok, Kim, Byung Hyo, Lee, Won Chul, Lee, Won Bo, Lee, Hoonkyung, Hyeon, Taeghwan, Ercius, Peter, and Park, Jungwon. Fri . "Amorphous-Phase-Mediated Crystallization of Ni Nanocrystals Revealed by High-Resolution Liquid-Phase Electron Microscopy". United States. https://doi.org/10.1021/jacs.8b11972. https://www.osti.gov/servlets/purl/1506398.
@article{osti_1506398,
title = {Amorphous-Phase-Mediated Crystallization of Ni Nanocrystals Revealed by High-Resolution Liquid-Phase Electron Microscopy},
author = {Yang, Jiwoong and Koo, Jahyun and Kim, Seulwoo and Jeon, Sungho and Choi, Back Kyu and Kwon, Sangwoo and Kim, Joodeok and Kim, Byung Hyo and Lee, Won Chul and Lee, Won Bo and Lee, Hoonkyung and Hyeon, Taeghwan and Ercius, Peter and Park, Jungwon},
abstractNote = {Nonclassical features of crystallization in solution have been recently identified both experimentally and theoretically. In particular, an amorphous-phase-mediated pathway is found in various crystallization systems as an important route, different from the classical nucleation and growth model. In this paper, we utilize high-resolution in situ transmission electron microscopy with graphene liquid cells to study amorphous-phase-mediated formation of Ni nanocrystals. An amorphous phase is precipitated in the initial stage of the reaction. Within the amorphous particles, crystalline domains nucleate and eventually form nanocrystals. In addition, unique crystallization behaviors, such as formation of multiple domains and dislocation relaxation, are observed in amorphous-phase-mediated crystallization. Theoretical calculations confirm that surface interactions can induce amorphous precipitation of metal precursors, which is analogous to the surface-induced amorphous-to-crystalline transformation occurring in biomineralization. In conclusion, our results imply that an unexplored nonclassical growth mechanism is important for the formation of nanocrystals.},
doi = {10.1021/jacs.8b11972},
journal = {Journal of the American Chemical Society},
number = 2,
volume = 141,
place = {United States},
year = {Fri Jan 04 00:00:00 EST 2019},
month = {Fri Jan 04 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 54 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Preparation of monodispersed colloidal particles
journal, January 1987


Principles of Crystal Nucleation and Growth
journal, January 2003

  • De Yoreo, J. J.
  • Reviews in Mineralogy and Geochemistry, Vol. 54, Issue 1
  • DOI: 10.2113/0540057

Tailoring crystallization phases in metallic glass nanorods via nucleus starvation
journal, December 2017


Evolution of an Ensemble of Nanoparticles in a Colloidal Solution:  Theoretical Study
journal, December 2001

  • Talapin, Dmitri V.; Rogach, Andrey L.; Haase, Markus
  • The Journal of Physical Chemistry B, Vol. 105, Issue 49
  • DOI: 10.1021/jp012229m

Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene
journal, December 2004

  • Bullen, Craig R.; Mulvaney, Paul
  • Nano Letters, Vol. 4, Issue 12
  • DOI: 10.1021/nl0496724

Precursor Conversion Kinetics and the Nucleation of Cadmium Selenide Nanocrystals
journal, December 2010

  • Owen, Jonathan S.; Chan, Emory M.; Liu, Haitao
  • Journal of the American Chemical Society, Vol. 132, Issue 51
  • DOI: 10.1021/ja106777j

Nucleation and growth of magnetite from solution
journal, February 2013

  • Baumgartner, Jens; Dey, Archan; Bomans, Paul H. H.
  • Nature Materials, Vol. 12, Issue 4
  • DOI: 10.1038/nmat3558

Pre-nucleation clusters as solute precursors in crystallisation
journal, January 2014

  • Gebauer, Denis; Kellermeier, Matthias; Gale, Julian D.
  • Chem. Soc. Rev., Vol. 43, Issue 7
  • DOI: 10.1039/C3CS60451A

Crystallization by particle attachment in synthetic, biogenic, and geologic environments
journal, July 2015

  • De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.
  • Science, Vol. 349, Issue 6247
  • DOI: 10.1126/science.aaa6760

Nonclassical nucleation and growth of inorganic nanoparticles
journal, June 2016


Two types of amorphous protein particles facilitate crystal nucleation
journal, February 2017

  • Yamazaki, Tomoya; Kimura, Yuki; Vekilov, Peter G.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 9
  • DOI: 10.1073/pnas.1606948114

Nucleation of protein crystals – a nanoscopic perspective
journal, January 2018

  • Sleutel, Mike; Van Driessche, Alexander E. S.
  • Nanoscale, Vol. 10, Issue 26
  • DOI: 10.1039/C8NR02867B

Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment
journal, July 2010


Lamellar Assembly of Cadmium Selenide Nanoclusters into Quantum Belts
journal, October 2011

  • Liu, Yi-Hsin; Wang, Fudong; Wang, Yuanyuan
  • Journal of the American Chemical Society, Vol. 133, Issue 42
  • DOI: 10.1021/ja206776g

Stepwise Evolution of Spherical Seeds into 20-Fold Twinned Icosahedra
journal, August 2012


Chemical Synthesis, Doping, and Transformation of Magic-Sized Semiconductor Alloy Nanoclusters
journal, May 2017

  • Yang, Jiwoong; Muckel, Franziska; Baek, Woonhyuk
  • Journal of the American Chemical Society, Vol. 139, Issue 19
  • DOI: 10.1021/jacs.7b02953

Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories
journal, June 2009


In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles
journal, January 2018


In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways
journal, September 2014


Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy
journal, January 2015

  • Smeets, Paul J. M.; Cho, Kang Rae; Kempen, Ralph G. E.
  • Nature Materials, Vol. 14, Issue 4
  • DOI: 10.1038/nmat4193

Multistep nucleation of nanocrystals in aqueous solution
journal, October 2016

  • Loh, N. Duane; Sen, Soumyo; Bosman, Michel
  • Nature Chemistry, Vol. 9, Issue 1
  • DOI: 10.1038/nchem.2618

Biomimetic Synthesis of Macroscopic-Scale Calcium Carbonate Thin Films. Evidence for a Multistep Assembly Process
journal, November 1998

  • Xu, Guofeng; Yao, Nan; Aksay, Ilhan A.
  • Journal of the American Chemical Society, Vol. 120, Issue 46
  • DOI: 10.1021/ja9819108

Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization
journal, June 2003


Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase
journal, November 2004


Stable Prenucleation Calcium Carbonate Clusters
journal, December 2008


The role of prenucleation clusters in surface-induced calcium phosphate crystallization
journal, November 2010

  • Dey, Archan; Bomans, Paul H. H.; Müller, Frank A.
  • Nature Materials, Vol. 9, Issue 12
  • DOI: 10.1038/nmat2900

Amorphous Phase Mediated Crystallization: Fundamentals of Biomineralization
journal, January 2018


Electron microscopy of specimens in liquid
journal, October 2011

  • de Jonge, Niels; Ross, Frances M.
  • Nature Nanotechnology, Vol. 6, Issue 11, p. 695-704
  • DOI: 10.1038/nnano.2011.161

Opportunities and challenges in liquid cell electron microscopy
journal, December 2015


Investigating materials formation with liquid-phase and cryogenic TEM
journal, June 2016


Quantifying the Self-Assembly Behavior of Anisotropic Nanoparticles Using Liquid-Phase Transmission Electron Microscopy
journal, April 2017


Visualization of Colloidal Nanocrystal Formation and Electrode–Electrolyte Interfaces in Liquids Using TEM
journal, July 2017


Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution
journal, May 2017


Liquid-Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles
journal, November 2017

  • Kim, Byung Hyo; Yang, Jiwoong; Lee, Donghoon
  • Advanced Materials, Vol. 30, Issue 4
  • DOI: 10.1002/adma.201703316

Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface
journal, July 2003

  • Williamson, M. J.; Tromp, R. M.; Vereecken, P. M.
  • Nature Materials, Vol. 2, Issue 8
  • DOI: 10.1038/nmat944

Real-Time Imaging of Pt3Fe Nanorod Growth in Solution
journal, May 2012


Observing the Growth of Metal–Organic Frameworks by in Situ Liquid Cell Transmission Electron Microscopy
journal, June 2015

  • Patterson, Joseph P.; Abellan, Patricia; Denny, Michael S.
  • Journal of the American Chemical Society, Vol. 137, Issue 23
  • DOI: 10.1021/jacs.5b00817

In Situ Electron Microscopy Imaging and Quantitative Structural Modulation of Nanoparticle Superlattices
journal, October 2016


In situ microscopy of the self-assembly of branched nanocrystals in solution
journal, April 2016

  • Sutter, Eli; Sutter, Peter; Tkachenko, Alexei V.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11213

In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals
journal, March 2004

  • Qu, Lianhua; Yu, W. William; Peng, Xiaogang
  • Nano Letters, Vol. 4, Issue 3
  • DOI: 10.1021/nl035211r

Sequential Growth of Magic-Size CdSe Nanocrystals
journal, February 2007


Mechanistic Study of Precursor Evolution in Colloidal Group II−VI Semiconductor Nanocrystal Synthesis
journal, January 2007

  • Liu, Haitao; Owen, Jonathan S.; Alivisatos, A. Paul
  • Journal of the American Chemical Society, Vol. 129, Issue 2
  • DOI: 10.1021/ja0656696

Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures
journal, November 2014

  • Kwon, Soon Gu; Krylova, Galyna; Phillips, Patrick J.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4115

Characterization of Indium Phosphide Quantum Dot Growth Intermediates Using MALDI-TOF Mass Spectrometry
journal, October 2016

  • Xie, Lisi; Shen, Yi; Franke, Daniel
  • Journal of the American Chemical Society, Vol. 138, Issue 41
  • DOI: 10.1021/jacs.6b06468

General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals
journal, August 2016

  • Yu, Kui; Liu, Xiangyang; Qi, Ting
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12223

In Situ Observation of Resistive Switching in an Asymmetric Graphene Oxide Bilayer Structure
journal, June 2018


Co 2+ -Doping of Magic-Sized CdSe Clusters: Structural Insights via Ligand Field Transitions
journal, September 2018


The impact of STEM aberration correction on materials science
journal, September 2017


High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells
journal, April 2012


3D structure of individual nanocrystals in solution by electron microscopy
journal, July 2015


3D Motion of DNA-Au Nanoconjugates in Graphene Liquid Cell Electron Microscopy
journal, August 2013

  • Chen, Qian; Smith, Jessica M.; Park, Jungwon
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl402694n

Strategies for Preparing Graphene Liquid Cells for Transmission Electron Microscopy
journal, May 2018


Noncrystalline-to-Crystalline Transformations in Pt Nanoparticles
journal, August 2013

  • Li, Long; Wang, Lin-Lin; Johnson, Duane D.
  • Journal of the American Chemical Society, Vol. 135, Issue 35
  • DOI: 10.1021/ja405497p

hcp and fcc Nickel Nanoparticles Prepared from Organically Functionalized Layered Phyllosilicates of Nickel(II)
journal, February 2007

  • Richard-Plouet, Mireille; Guillot, Murielle; Vilminot, Serge
  • Chemistry of Materials, Vol. 19, Issue 4
  • DOI: 10.1021/cm062521c

Determination of Redox Reaction Rates and Orders by In Situ Liquid Cell Electron Microscopy of Pd and Au Solution Growth
journal, November 2014

  • Sutter, Eli A.; Sutter, Peter W.
  • Journal of the American Chemical Society, Vol. 136, Issue 48
  • DOI: 10.1021/ja508279v

Facet development during platinum nanocube growth
journal, August 2014


In Situ Study of Fe 3 Pt–Fe 2 O 3 Core–Shell Nanoparticle Formation
journal, November 2015

  • Liang, Wen-I; Zhang, Xiaowei; Zan, Yunlong
  • Journal of the American Chemical Society, Vol. 137, Issue 47
  • DOI: 10.1021/jacs.5b10076

Graphene–nickel interfaces: a review
journal, January 2014


Self-organized growth and self-assembly of nanostructures on 2D materials
journal, October 2017


Kinetics of the Deposition of Inert Particles from Electrolytic Baths
journal, January 1972

  • Guglielmi, N.
  • Journal of The Electrochemical Society, Vol. 119, Issue 8
  • DOI: 10.1149/1.2404383

Works referencing / citing this record:

Revealing the Cluster‐Cloud and Its Role in Nanocrystallization
journal, February 2019