skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanically active materials in three-dimensional mesostructures

Abstract

Complex, three-dimensional (3D) mesostructures that incorporate advanced, mechanically active materials are of broad, growing interest for their potential use in many emerging systems. The technology implications range from precision-sensing microelectromechanical systems, to tissue scaffolds that exploit the principles of mechanobiology, to mechanical energy harvesters that support broad bandwidth operation. The work presented here introduces strategies in guided assembly and heterogeneous materials integration as routes to complex, 3D microscale mechanical frameworks that incorporate multiple, independently addressable piezoelectric thin-film actuators for vibratory excitation and precise control. The approach combines transfer printing as a scheme for materials integration with structural buckling as a means for 2D-to-3D geometric transformation, for designs that range from simple, symmetric layouts to complex, hierarchical configurations, on planar or curvilinear surfaces. Systematic experimental and computational studies reveal the underlying characteristics and capabilities, including selective excitation of targeted vibrational modes for simultaneous measurements of viscosity and density of surrounding fluids. The results serve as the foundations for unusual classes of mechanically active 3D mesostructures with unique functions relevant to biosensing, mechanobiology, energy harvesting, and others.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1];  [2];  [1]; ORCiD logo [2];  [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [5]; ORCiD logo [6]
  1. University of Illinois at Urbana-Champaign, Urbana, IL (United States)
  2. Northwestern Univ., Evanston, IL (United States)
  3. Bristol Univ. (United Kingdom)
  4. Xi’an Jiaotong University, Xi’an, Shaanxi (China)
  5. Tsinghua Univ., Beijing (China)
  6. University of Illinois at Urbana-Champaign, Urbana, IL (United States); Northwestern Univ., Evanston, IL (United States)
Publication Date:
Research Org.:
Univ. of Illinois at Urbana-Champaign, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1499946
Grant/Contract Number:  
FG02-07ER46471
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 9; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Ning, Xin, Yu, Xinge, Wang, Heling, Sun, Rujie, Corman, R. E., Li, Haibo, Lee, Chan Mi, Xue, Yeguang, Chempakasseril, Aditya, Yao, Yao, Zhang, Ziqi, Luan, Haiwen, Wang, Zizheng, Xia, Wei, Feng, Xue, Ewoldt, Randy H., Huang, Yonggang, Zhang, Yihui, and Rogers, John A.. Mechanically active materials in three-dimensional mesostructures. United States: N. p., 2018. Web. https://doi.org/10.1126/sciadv.aat8313.
Ning, Xin, Yu, Xinge, Wang, Heling, Sun, Rujie, Corman, R. E., Li, Haibo, Lee, Chan Mi, Xue, Yeguang, Chempakasseril, Aditya, Yao, Yao, Zhang, Ziqi, Luan, Haiwen, Wang, Zizheng, Xia, Wei, Feng, Xue, Ewoldt, Randy H., Huang, Yonggang, Zhang, Yihui, & Rogers, John A.. Mechanically active materials in three-dimensional mesostructures. United States. https://doi.org/10.1126/sciadv.aat8313
Ning, Xin, Yu, Xinge, Wang, Heling, Sun, Rujie, Corman, R. E., Li, Haibo, Lee, Chan Mi, Xue, Yeguang, Chempakasseril, Aditya, Yao, Yao, Zhang, Ziqi, Luan, Haiwen, Wang, Zizheng, Xia, Wei, Feng, Xue, Ewoldt, Randy H., Huang, Yonggang, Zhang, Yihui, and Rogers, John A.. Fri . "Mechanically active materials in three-dimensional mesostructures". United States. https://doi.org/10.1126/sciadv.aat8313. https://www.osti.gov/servlets/purl/1499946.
@article{osti_1499946,
title = {Mechanically active materials in three-dimensional mesostructures},
author = {Ning, Xin and Yu, Xinge and Wang, Heling and Sun, Rujie and Corman, R. E. and Li, Haibo and Lee, Chan Mi and Xue, Yeguang and Chempakasseril, Aditya and Yao, Yao and Zhang, Ziqi and Luan, Haiwen and Wang, Zizheng and Xia, Wei and Feng, Xue and Ewoldt, Randy H. and Huang, Yonggang and Zhang, Yihui and Rogers, John A.},
abstractNote = {Complex, three-dimensional (3D) mesostructures that incorporate advanced, mechanically active materials are of broad, growing interest for their potential use in many emerging systems. The technology implications range from precision-sensing microelectromechanical systems, to tissue scaffolds that exploit the principles of mechanobiology, to mechanical energy harvesters that support broad bandwidth operation. The work presented here introduces strategies in guided assembly and heterogeneous materials integration as routes to complex, 3D microscale mechanical frameworks that incorporate multiple, independently addressable piezoelectric thin-film actuators for vibratory excitation and precise control. The approach combines transfer printing as a scheme for materials integration with structural buckling as a means for 2D-to-3D geometric transformation, for designs that range from simple, symmetric layouts to complex, hierarchical configurations, on planar or curvilinear surfaces. Systematic experimental and computational studies reveal the underlying characteristics and capabilities, including selective excitation of targeted vibrational modes for simultaneous measurements of viscosity and density of surrounding fluids. The results serve as the foundations for unusual classes of mechanically active 3D mesostructures with unique functions relevant to biosensing, mechanobiology, energy harvesting, and others.},
doi = {10.1126/sciadv.aat8313},
journal = {Science Advances},
number = 9,
volume = 4,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1. Fig. 1.: Schematic illustrations, optical images, SEM images, and finite element modeling results for a representative 3D mesostructure with five independently addressable PZT microactuators. (A) Schematic illustration of the 2D architecture of the system. (B) Schematic illustration of the 3D system after assembly by controlled biaxial compressive buckling. (C) Explodedmore » view of the layout. (D) Optical images (top and perspective views) of the 3D architecture. (E) SEM images (top and perspective views). The false color of the top-view image highlights the electrodes (gold) and PZT actuators (blue). (F) Results of finite element modeling, with color representation for the magnitude of the strain. Only small strains appear in the PZT microactuators. Scale bars, 500μm.« less

Save / Share:

Works referenced in this record:

Si-gold-glass hybrid wafer bond for 3D-MEMS and wafer level packaging
journal, October 2016


Multi-stack silicon-direct wafer bonding for 3D MEMS manufacturing
journal, January 2003


Energy harvesting from human motion and bridge vibrations: An evaluation of current nonlinear energy harvesting solutions
journal, July 2012

  • Green, Peter L.; Papatheou, Evangelos; Sims, Neil D.
  • Journal of Intelligent Material Systems and Structures, Vol. 24, Issue 12
  • DOI: 10.1177/1045389X12473379

Functional aspects of blood plasma proteins.: V. Viscosity
journal, April 1987


A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes
journal, September 2015

  • Zhang, Yihui; Yan, Zheng; Nan, Kewang
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 38
  • DOI: 10.1073/pnas.1515602112

Whole Blood Viscosity, Plasma Viscosity and Erythrocyte Aggregation in Nine Mammalian Species: Reference Values and Comparison of Data
journal, May 2003

  • Windberger, U.; Bartholovitsch, A.; Plasenzotti, R.
  • Experimental Physiology, Vol. 88, Issue 3
  • DOI: 10.1113/eph8802496

Micromachined force sensors for the study of cell mechanics
journal, April 2005

  • Yang, Shengyuan; Saif, Taher
  • Review of Scientific Instruments, Vol. 76, Issue 4
  • DOI: 10.1063/1.1863792

Electrically integrated SU-8 clamped graphene drum resonators for strain engineering
journal, April 2013

  • Lee, Sunwoo; Chen, Changyao; Deshpande, Vikram V.
  • Applied Physics Letters, Vol. 102, Issue 15
  • DOI: 10.1063/1.4793302

Printing, folding and assembly methods for forming 3D mesostructures in advanced materials
journal, March 2017


MEMS sensors and microsystems for cell mechanobiology
journal, April 2011

  • Rajagopalan, Jagannathan; Saif, M. Taher A.
  • Journal of Micromechanics and Microengineering, Vol. 21, Issue 5
  • DOI: 10.1088/0960-1317/21/5/054002

Microelectromechanical systems (MEMS): fabrication, design and applications
journal, November 2001


Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling
journal, January 2015


Sensing viscosity and density of glycerol–water mixtures utilizing a suspended plate MEMS resonator
journal, February 2012

  • Cerimovic, Samir; Beigelbeck, Roman; Antlinger, Hannes
  • Microsystem Technologies, Vol. 18, Issue 7-8
  • DOI: 10.1007/s00542-012-1437-9

The Microcantilever: A Versatile Tool for Measuring the Rheological Properties of Complex Fluids
journal, January 2012

  • Dufour, I.; Maali, A.; Amarouchene, Y.
  • Journal of Sensors, Vol. 2012
  • DOI: 10.1155/2012/719898

Single-protein nanomechanical mass spectrometry in real time
journal, August 2012


A review of vibration-based MEMS piezoelectric energy harvesters
journal, January 2011


Nonlinear Dynamics of Spring Softening and Hardening in Folded-MEMS Comb Drive Resonators
journal, August 2011

  • Elshurafa, Amro M.; Khirallah, Kareem; Tawfik, Hani H.
  • Journal of Microelectromechanical Systems, Vol. 20, Issue 4
  • DOI: 10.1109/JMEMS.2011.2148162

Tunable, Broadband Nonlinear Nanomechanical Resonator
journal, May 2010

  • Cho, Hanna; Yu, Min-Feng; Vakakis, Alexander F.
  • Nano Letters, Vol. 10, Issue 5
  • DOI: 10.1021/nl100480y

Viscoelasticity and Dielectric Measurement of Small Sample Volume for Diagnostic Platform of Synovial Fluid
journal, January 2015


Controlled Mechanical Buckling for Origami-Inspired Construction of 3D Microstructures in Advanced Materials
journal, February 2016

  • Yan, Zheng; Zhang, Fan; Wang, Jiechen
  • Advanced Functional Materials, Vol. 26, Issue 16
  • DOI: 10.1002/adfm.201504901

Young’s modulus and density measurements of thin atomic layer deposited films using resonant nanomechanics
journal, August 2010

  • Ilic, B.; Krylov, S.; Craighead, H. G.
  • Journal of Applied Physics, Vol. 108, Issue 4
  • DOI: 10.1063/1.3474987

Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication
journal, August 2012

  • Carlson, Andrew; Bowen, Audrey M.; Huang, Yonggang
  • Advanced Materials, Vol. 24, Issue 39, p. 5284-5318
  • DOI: 10.1002/adma.201201386

Fabrication of piezoelectric MEMS devices-from thin film to bulk PZT wafer
journal, March 2008


Microfluidic Devices for Bioapplications
journal, November 2010


Rheological behavior probed by vibrating microcantilevers
journal, January 2008

  • Belmiloud, Naser; Dufour, Isabelle; Colin, Annie
  • Applied Physics Letters, Vol. 92, Issue 4
  • DOI: 10.1063/1.2837181

Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope
journal, July 1998

  • Sader, John Elie
  • Journal of Applied Physics, Vol. 84, Issue 1
  • DOI: 10.1063/1.368002

Electromagnetically driven torsional resonators for viscosity and mass density sensing applications
journal, June 2015

  • Heinisch, M.; Voglhuber-Brunnmaier, T.; Reichel, E. K.
  • Sensors and Actuators A: Physical, Vol. 229
  • DOI: 10.1016/j.sna.2015.03.033

A novel 3D mammalian cell perfusion-culture system in microfluidic channels
journal, January 2007

  • Toh, Yi-Chin; Zhang, Chi; Zhang, Jing
  • Lab on a Chip, Vol. 7, Issue 3
  • DOI: 10.1039/b614872g

A straightforward determination of fluid viscosity and density using microcantilevers: From experimental data to analytical expressions
journal, December 2011

  • Youssry, M.; Belmiloud, N.; Caillard, B.
  • Sensors and Actuators A: Physical, Vol. 172, Issue 1
  • DOI: 10.1016/j.sna.2011.02.025

Rheological measurements using microcantilevers
journal, January 2002

  • Boskovic, S.; Chon, J. W. M.; Mulvaney, P.
  • Journal of Rheology, Vol. 46, Issue 4
  • DOI: 10.1122/1.1475978

Comb-drive actuators for large displacements
journal, September 1996

  • Legtenberg, Rob; Groeneveld, A. W.; Elwenspoek, M.
  • Journal of Micromechanics and Microengineering, Vol. 6, Issue 3
  • DOI: 10.1088/0960-1317/6/3/004

3D Tunable, Multiscale, and Multistable Vibrational Micro-Platforms Assembled by Compressive Buckling
journal, March 2017

  • Ning, Xin; Wang, Heling; Yu, Xinge
  • Advanced Functional Materials, Vol. 27, Issue 14
  • DOI: 10.1002/adfm.201605914

Graphene mechanical oscillators with tunable frequency
journal, November 2013

  • Chen, Changyao; Lee, Sunwoo; Deshpande, Vikram V.
  • Nature Nanotechnology, Vol. 8, Issue 12
  • DOI: 10.1038/nnano.2013.232

Rheology of globular proteins: apparent yield stress, high shear rate viscosity and interfacial viscoelasticity of bovine serum albumin solutions
journal, January 2011

  • Sharma, Vivek; Jaishankar, Aditya; Wang, Ying-Chih
  • Soft Matter, Vol. 7, Issue 11
  • DOI: 10.1039/c0sm01312a

Thin-film piezoelectric MEMS
journal, November 2012

  • Eom, Chang-Beom; Trolier-McKinstry, Susan
  • MRS Bulletin, Vol. 37, Issue 11
  • DOI: 10.1557/mrs.2012.273

Density sensitive driving mode of a double membrane viscometer
conference, October 2011


Nonlinear Deformation of Ferroelectric Ceramics
journal, April 1993


Measurement of plasma viscosity by free oscillation rheometry: imprecision, sample stability and establishment of a new reference range
journal, July 2014

  • Pedersen, Lise; Nielsen, Erling B.; Christensen, Majbrit K.
  • Annals of Clinical Biochemistry, Vol. 51, Issue 4
  • DOI: 10.1177/0004563213504550

Frequency-dependent electrostatic actuation in microfluidic MEMS
journal, February 2005

  • Sounart, T. L.; Michalske, T. A.; Zavadil, K. R.
  • Journal of Microelectromechanical Systems, Vol. 14, Issue 1
  • DOI: 10.1109/JMEMS.2004.839006

Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film
journal, May 2009


Frequency fluctuations in silicon nanoresonators
journal, February 2016

  • Sansa, Marc; Sage, Eric; Bullard, Elizabeth C.
  • Nature Nanotechnology, Vol. 11, Issue 6
  • DOI: 10.1038/nnano.2016.19

A closed-loop wide-range tunable mechanical resonator for energy harvesting systems
journal, August 2009

  • Peters, Christian; Maurath, Dominic; Schock, Wolfram
  • Journal of Micromechanics and Microengineering, Vol. 19, Issue 9
  • DOI: 10.1088/0960-1317/19/9/094004

Measurement of adherent cell mass and growth
journal, November 2010

  • Park, K.; Millet, L. J.; Kim, N.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 48
  • DOI: 10.1073/pnas.1011365107

Precision rheometry: Surface tension effects on low-torque measurements in rotational rheometers
journal, November 2013

  • Johnston, Michael T.; Ewoldt, Randy H.
  • Journal of Rheology, Vol. 57, Issue 6
  • DOI: 10.1122/1.4819914

Viscosity sensing in heated alkaline zeolite synthesis media
journal, January 2009

  • Follens, Lana R. A.; Reichel, Erwin K.; Riesch, Christian
  • Phys. Chem. Chem. Phys., Vol. 11, Issue 16
  • DOI: 10.1039/B816040F

Plasma viscosity: A forgotten variable
journal, January 2008

  • Késmárky, Gábor; Kenyeres, Péter; Rábai, Miklós
  • Clinical Hemorheology and Microcirculation, Vol. 39, Issue 1–4
  • DOI: 10.3233/CH-2008-1088

Controlled Mechanical Buckling for Origami-Inspired Construction of 3D Microstructures in Advanced Materials
journal, June 2017

  • Yan, Zheng; Zhang, Fan; Wang, Jiechen
  • Advanced Functional Materials, Vol. 27, Issue 22
  • DOI: 10.1002/adfm.201702339

Functional aspects of blood plasma proteins.: II. Gelling properties
journal, June 1984


    Works referencing / citing this record:

    Mechanical Metamaterials and Their Engineering Applications
    journal, December 2018

    • Surjadi, James Utama; Gao, Libo; Du, Huifeng
    • Advanced Engineering Materials, Vol. 21, Issue 3
    • DOI: 10.1002/adem.201800864

    Transformable, Freestanding 3D Mesostructures Based on Transient Materials and Mechanical Interlocking
    journal, July 2019

    • Park, Yoonseok; Luan, Haiwen; Kwon, Kyeongha
    • Advanced Functional Materials, Vol. 29, Issue 40
    • DOI: 10.1002/adfm.201903181

    Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches
    journal, June 2019


    Mechanically‐Guided Structural Designs in Stretchable Inorganic Electronics
    journal, July 2019


    3D Self‐Assembled Microelectronic Devices: Concepts, Materials, Applications
    journal, September 2019

    • Karnaushenko, Daniil; Kang, Tong; Bandari, Vineeth K.
    • Advanced Materials, Vol. 32, Issue 15
    • DOI: 10.1002/adma.201902994

    A Structured Design for Highly Stretchable Electronic Skin
    journal, August 2019

    • Zhao, Jinsheng; Zhang, Can; Zou, Dan
    • Advanced Materials Technologies, Vol. 4, Issue 10
    • DOI: 10.1002/admt.201900492

    Thin, Skin‐Integrated, Stretchable Triboelectric Nanogenerators for Tactile Sensing
    journal, November 2019

    • Liu, Yiming; Wang, Lingyun; Zhao, Ling
    • Advanced Electronic Materials, Vol. 6, Issue 1
    • DOI: 10.1002/aelm.201901174

    Vibrational modes in MEMS resonators
    journal, October 2019

    • Platz, Daniel; Schmid, Ulrich
    • Journal of Micromechanics and Microengineering, Vol. 29, Issue 12
    • DOI: 10.1088/1361-6439/ab4bad

    3D printed microstructures for flexible electronic devices
    journal, July 2019


    An Inverse Design Method of Buckling-Guided Assembly for Ribbon-Type 3D Structures
    journal, November 2019

    • Xu, Zheng; Fan, Zhichao; Zi, Yanyang
    • Journal of Applied Mechanics, Vol. 87, Issue 3
    • DOI: 10.1115/1.4045367

    Recent Development of Flexible and Stretchable Antennas for Bio-Integrated Electronics
    journal, December 2018


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.