DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map

Abstract

Structural deformation and collapse in metal-organic frameworks (MOFs) can lead to loss of long-range order, making it a challenge to model these amorphous materials using conventional computational methods. In this work, we show that a structure–property map consisting of simulated data for crystalline MOFs can be used to indirectly obtain adsorption properties of structurally deformed MOFs. The structure–property map (with dimensions such as Henry coefficient, heat of adsorption, and pore volume) was constructed using a large data set of over 12000 crystalline MOFs from molecular simulations. By mapping the experimental data points of deformed SNU-200, MOF-5, and Ni-MOF-74 onto this structure–property map, we show that the experimentally deformed MOFs share similar adsorption properties with their nearest neighbor crystalline structures. Furthermore, once the nearest neighbor crystalline MOFs for a deformed MOF are selected from a structure–property map at a specific condition, then the adsorption properties of these MOFs can be successfully transformed onto the degraded MOFs, leading to a new way to obtain properties of materials whose structural information is lost.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [3];  [5];  [1]
  1. Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering
  2. Kyoto Univ. (Japan). Graduate School of Science, Div. of Chemistry
  3. Gachon Univ., Sungnam (Republic of Korea). Dept. of Nanochemistry, College of Bionano
  4. Saudi Arabian Oil Co., Dhahran (Saudi Arabia). R&D Center
  5. Seoul National Univ. (Korea, Republic of). Dept. of Chemistry
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1498118
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 114; Journal Issue: 30; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; metal–organic framework; deformation; structure–property map; Monte Carlo simulation; transferability

Citation Formats

Jeong, WooSeok, Lim, Dae-Woon, Kim, Sungjune, Harale, Aadesh, Yoon, Minyoung, Suh, Myunghyun Paik, and Kim, Jihan. Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map. United States: N. p., 2017. Web. doi:10.1073/pnas.1706330114.
Jeong, WooSeok, Lim, Dae-Woon, Kim, Sungjune, Harale, Aadesh, Yoon, Minyoung, Suh, Myunghyun Paik, & Kim, Jihan. Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map. United States. https://doi.org/10.1073/pnas.1706330114
Jeong, WooSeok, Lim, Dae-Woon, Kim, Sungjune, Harale, Aadesh, Yoon, Minyoung, Suh, Myunghyun Paik, and Kim, Jihan. Mon . "Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map". United States. https://doi.org/10.1073/pnas.1706330114. https://www.osti.gov/servlets/purl/1498118.
@article{osti_1498118,
title = {Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map},
author = {Jeong, WooSeok and Lim, Dae-Woon and Kim, Sungjune and Harale, Aadesh and Yoon, Minyoung and Suh, Myunghyun Paik and Kim, Jihan},
abstractNote = {Structural deformation and collapse in metal-organic frameworks (MOFs) can lead to loss of long-range order, making it a challenge to model these amorphous materials using conventional computational methods. In this work, we show that a structure–property map consisting of simulated data for crystalline MOFs can be used to indirectly obtain adsorption properties of structurally deformed MOFs. The structure–property map (with dimensions such as Henry coefficient, heat of adsorption, and pore volume) was constructed using a large data set of over 12000 crystalline MOFs from molecular simulations. By mapping the experimental data points of deformed SNU-200, MOF-5, and Ni-MOF-74 onto this structure–property map, we show that the experimentally deformed MOFs share similar adsorption properties with their nearest neighbor crystalline structures. Furthermore, once the nearest neighbor crystalline MOFs for a deformed MOF are selected from a structure–property map at a specific condition, then the adsorption properties of these MOFs can be successfully transformed onto the degraded MOFs, leading to a new way to obtain properties of materials whose structural information is lost.},
doi = {10.1073/pnas.1706330114},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 30,
volume = 114,
place = {United States},
year = {Mon Jul 10 00:00:00 EDT 2017},
month = {Mon Jul 10 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (A) CH4 structure–property map at 298 K constructed using the simulated adsorption data of the CoRE MOFs (6,093 structures, which show CH4 KH > 10 −7 mol·kg−1·Pa−1). The projected data are displayed in the bottom of the graph. Experimental data are placed on top of the map: (B)more » crystalline MOF structures, and (C) multiple PCN-14 structures.« less

Save / Share:

Works referenced in this record:

Water Sensitivity in Zn 4 O-Based MOFs is Structure and History Dependent
journal, February 2015

  • Guo, Ping; Dutta, Dhanadeep; Wong-Foy, Antek G.
  • Journal of the American Chemical Society, Vol. 137, Issue 7
  • DOI: 10.1021/ja512382f

In silico screening of carbon-capture materials
journal, May 2012

  • Lin, Li-Chiang; Berger, Adam H.; Martin, Richard L.
  • Nature Materials, Vol. 11, Issue 7
  • DOI: 10.1038/nmat3336

Computational approaches to study adsorption in MOFs with unsaturated metal sites
journal, February 2014


Hydrogen Storage in Metal–Organic Frameworks
journal, September 2011

  • Suh, Myunghyun Paik; Park, Hye Jeong; Prasad, Thazhe Kootteri
  • Chemical Reviews, Vol. 112, Issue 2, p. 782-835
  • DOI: 10.1021/cr200274s

A robust doubly interpenetrated metal–organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons
journal, January 2012

  • He, Yabing; Zhang, Zhangjing; Xiang, Shengchang
  • Chemical Communications, Vol. 48, Issue 52
  • DOI: 10.1039/c2cc31792c

The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66
journal, January 2013

  • DeCoste, Jared B.; Peterson, Gregory W.; Schindler, Bryan J.
  • Journal of Materials Chemistry A, Vol. 1, Issue 38
  • DOI: 10.1039/c3ta12497e

Methane storage in metal–organic frameworks
journal, January 2014

  • He, Yabing; Zhou, Wei; Qian, Guodong
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00032C

UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

The materials genome in action: identifying the performance limits for methane storage
journal, January 2015

  • Simon, Cory M.; Kim, Jihan; Gomez-Gualdron, Diego A.
  • Energy & Environmental Science, Vol. 8, Issue 4
  • DOI: 10.1039/C4EE03515A

A robust near infrared luminescent ytterbium metal–organic framework for sensing of small molecules
journal, January 2011

  • Guo, Zhiyong; Xu, Hui; Su, Shengqun
  • Chemical Communications, Vol. 47, Issue 19
  • DOI: 10.1039/c1cc10897b

High-Throughput Screening of Metal–Organic Frameworks for CO 2 Capture in the Presence of Water
journal, September 2016


High-Throughput Characterization of Porous Materials Using Graphics Processing Units
journal, April 2012

  • Kim, Jihan; Martin, Richard L.; Rübel, Oliver
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 5
  • DOI: 10.1021/ct200787v

Increasing the Stability of Metal-Organic Frameworks
journal, September 2014

  • Bosch, Mathieu; Zhang, Muwei; Zhou, Hong-Cai
  • Advances in Chemistry, Vol. 2014
  • DOI: 10.1155/2014/182327

On the Henry constant and isosteric heat at zero loading in gas phase adsorption
journal, August 2008

  • Do, D. D.; Nicholson, D.; Do, H. D.
  • Journal of Colloid and Interface Science, Vol. 324, Issue 1-2
  • DOI: 10.1016/j.jcis.2008.05.028

A porous metal–organic framework with helical chain building units exhibiting facile transition from micro- to meso-porosity
journal, January 2012

  • Park, Jinhee; Li, Jian-Rong; Carolina Sañudo, E.
  • Chem. Commun., Vol. 48, Issue 6
  • DOI: 10.1039/C1CC16261F

Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals
journal, October 2014

  • Chung, Yongchul G.; Camp, Jeffrey; Haranczyk, Maciej
  • Chemistry of Materials, Vol. 26, Issue 21
  • DOI: 10.1021/cm502594j

Molecular Simulations of Zeolites: Adsorption, Diffusion, and Shape Selectivity
journal, October 2008

  • Smit, Berend; Maesen, Theo L. M.
  • Chemical Reviews, Vol. 108, Issue 10
  • DOI: 10.1021/cr8002642

Evaluation of Force Field Performance for High-Throughput Screening of Gas Uptake in Metal–Organic Frameworks
journal, January 2015

  • McDaniel, Jesse G.; Li, Song; Tylianakis, Emmanouil
  • The Journal of Physical Chemistry C, Vol. 119, Issue 6
  • DOI: 10.1021/jp511674w

Screening Zeolites for Gas Separation Applications Involving Methane, Nitrogen, and Carbon Dioxide
journal, October 2011

  • Jensen, Nathan K.; Rufford, Thomas E.; Watson, Guillaume
  • Journal of Chemical & Engineering Data, Vol. 57, Issue 1
  • DOI: 10.1021/je200817w

Computational prediction of hetero-interpenetration in metal–organic frameworks
journal, January 2017

  • Kwon, Ohmin; Park, Sanghoon; Zhou, Hong-Cai
  • Chemical Communications, Vol. 53, Issue 12
  • DOI: 10.1039/C6CC08940B

Simulation and modelling of MOFs for hydrogen storage
journal, January 2015


New materials for methane capture from dilute and medium-concentration sources
journal, April 2013

  • Kim, Jihan; Maiti, Amitesh; Lin, Li-Chiang
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2697

Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores
journal, August 2008

  • Caskey, Stephen R.; Wong-Foy, Antek G.; Matzger, Adam J.
  • Journal of the American Chemical Society, Vol. 130, Issue 33, p. 10870-10871
  • DOI: 10.1021/ja8036096

Methane Storage in Metal–Organic Frameworks: Current Records, Surprise Findings, and Challenges
journal, July 2013

  • Peng, Yang; Krungleviciute, Vaiva; Eryazici, Ibrahim
  • Journal of the American Chemical Society, Vol. 135, Issue 32, p. 11887-11894
  • DOI: 10.1021/ja4045289

Quantum effects in simulated water by the Feynman–Hibbs approach
journal, June 1998

  • Guillot, Bertrand; Guissani, Yves
  • The Journal of Chemical Physics, Vol. 108, Issue 24
  • DOI: 10.1063/1.476475

Postsynthesis Annealing of MOF-5 Remarkably Enhances the Framework Structural Stability and CO 2 Uptake
journal, November 2014

  • Gadipelli, Srinivas; Guo, Zhengxiao
  • Chemistry of Materials, Vol. 26, Issue 22
  • DOI: 10.1021/cm502399q

Defect-Engineered Metal-Organic Frameworks
journal, June 2015

  • Fang, Zhenlan; Bueken, Bart; De Vos, Dirk E.
  • Angewandte Chemie International Edition, Vol. 54, Issue 25
  • DOI: 10.1002/anie.201411540

Evaluating metal–organic frameworks for natural gas storage
journal, January 2014

  • Mason, Jarad A.; Veenstra, Mike; Long, Jeffrey R.
  • Chemical Science, Vol. 5, Issue 1, p. 32-51
  • DOI: 10.1039/C3SC52633J

In Silico Design of Three-Dimensional Porous Covalent Organic Frameworks via Known Synthesis Routes and Commercially Available Species
journal, October 2014

  • Martin, Richard L.; Simon, Cory M.; Medasani, Bharat
  • The Journal of Physical Chemistry C, Vol. 118, Issue 41
  • DOI: 10.1021/jp507152j

Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not?
journal, August 2011

  • Kim, Jihan; Rodgers, Jocelyn M.; Athènes, Manuel
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 10
  • DOI: 10.1021/ct200474j

Water Stability and Adsorption in Metal–Organic Frameworks
journal, September 2014

  • Burtch, Nicholas C.; Jasuja, Himanshu; Walton, Krista S.
  • Chemical Reviews, Vol. 114, Issue 20, p. 10575-10612
  • DOI: 10.1021/cr5002589

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Chemical, thermal and mechanical stabilities of metal–organic frameworks
journal, February 2016


Understanding the Mechanisms of CO 2 Adsorption Enhancement in Pure Silica Zeolites under Humid Conditions
journal, October 2016


Computation of the properties of liquid neon, methane, and gas helium at low temperature by the Feynman-Hibbs approach
journal, October 2004

  • Tchouar, N.; Ould-Kaddour, F.; Levesque, D.
  • The Journal of Chemical Physics, Vol. 121, Issue 15
  • DOI: 10.1063/1.1794651

Large-scale screening of hypothetical metal–organic frameworks
journal, November 2011

  • Wilmer, Christopher E.; Leaf, Michael; Lee, Chang Yeon
  • Nature Chemistry, Vol. 4, Issue 2, p. 83-89
  • DOI: 10.1038/nchem.1192

Methane storage in flexible metal–organic frameworks with intrinsic thermal management
journal, October 2015

  • Mason, Jarad A.; Oktawiec, Julia; Taylor, Mercedes K.
  • Nature, Vol. 527, Issue 7578
  • DOI: 10.1038/nature15732

Metal–organic framework with optimally selective xenon adsorption and separation
journal, June 2016

  • Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11831

A Microporous Metal-Organic Framework for Highly Selective Separation of Acetylene, Ethylene, and Ethane from Methane at Room Temperature
journal, December 2011

  • He, Yabing; Zhang, Zhangjing; Xiang, Shengchang
  • Chemistry - A European Journal, Vol. 18, Issue 2
  • DOI: 10.1002/chem.201102734

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Design and synthesis of an exceptionally stable and highly porous metal-organic framework
journal, November 1999

  • Li, Hailian; Eddaoudi, Mohamed; M., O'Keeffe
  • Nature, Vol. 402, Issue 6759, p. 276-279
  • DOI: 10.1038/46248

Hydrogen Storage in a Potassium-Ion-Bound Metal-Organic Framework Incorporating Crown Ether Struts as Specific Cation Binding Sites
journal, June 2014

  • Lim, Dae-Woon; Chyun, Seung An; Suh, Myunghyun Paik
  • Angewandte Chemie International Edition, Vol. 53, Issue 30
  • DOI: 10.1002/anie.201404265

Path integral simulations of mixed para ‐D 2 and ortho ‐D 2 clusters: The orientational effects
journal, May 1994

  • Buch, V.
  • The Journal of Chemical Physics, Vol. 100, Issue 10
  • DOI: 10.1063/1.466854

Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5)
journal, November 2007

  • Kaye, Steven S.; Dailly, Anne; Yaghi, Omar M.
  • Journal of the American Chemical Society, Vol. 129, Issue 46, p. 14176-14177
  • DOI: 10.1021/ja076877g

Metal-Organic Framework from an Anthracene Derivative Containing Nanoscopic Cages Exhibiting High Methane Uptake
journal, January 2008

  • Ma, Shengqian; Sun, Daofeng; Simmons, Jason M.
  • Journal of the American Chemical Society, Vol. 130, Issue 3
  • DOI: 10.1021/ja0771639

Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes
journal, March 1998

  • Martin, Marcus G.; Siepmann, J. Ilja
  • The Journal of Physical Chemistry B
  • DOI: 10.1021/jp972543

Works referencing / citing this record:

Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks
journal, September 2018


Predicting performance limits of methane gas storage in zeolites with an artificial neural network
journal, January 2019

  • Lee, Sangwon; Kim, Baekjun; Kim, Jihan
  • Journal of Materials Chemistry A, Vol. 7, Issue 6
  • DOI: 10.1039/c8ta12208c

Regulation of the Degree of Interpenetration in Metal–Organic Frameworks
journal, December 2019

  • Verma, Gaurav; Butikofer, Sydney; Kumar, Sanjay
  • Topics in Current Chemistry, Vol. 378, Issue 1
  • DOI: 10.1007/s41061-019-0268-x

Inverse design of porous materials using artificial neural networks
journal, January 2020


Inverse design of porous materials using artificial neural networks
journal, January 2020


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.