DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Incorporating Flexibility Effects into Metal–Organic Framework Adsorption Simulations Using Different Models

Abstract

High-throughput calculations based on molecular simulations to predict the adsorption of molecules inside metal–organic frameworks (MOFs) have become a useful complement to experimental efforts to identify promising adsorbents for chemical separations and storage. For computational convenience, all existing efforts of this kind have relied on simulations in which the MOF is approximated as rigid. In this paper, we use extensive adsorption–relaxation simulations that fully include MOF flexibility effects to explore the validity of the rigid framework approximation. We also examine the accuracy of several approximate methods to incorporate framework flexibility that are more computationally efficient than adsorption–relaxation calculations. We first benchmark various models of MOF flexibility for four MOFs with well-established CO2 experimental consensus isotherms. We then consider a range of adsorption properties, including Henry’s constants, nondilute loadings, and adsorption selectivity, for seven adsorbates in 15 MOFs randomly selected from the CoRE MOF database. Our results indicate that in many MOFs adsorption–relaxation simulations are necessary to make quantitative predictions of adsorption, particularly for adsorption at dilute concentrations, although more standard calculations based on rigid structures can provide useful information. Finally, we investigate whether a correlation exists between the elastic properties of empty MOFs and the importance of including framework flexibilitymore » in making accurate predictions of molecular adsorption. Our results did not identify a simple correlation of this type.« less

Authors:
 [1];  [2];  [1];  [3]; ORCiD logo [2]; ORCiD logo [4]
  1. Georgia Inst. of Technology, Atlanta, GA (United States)
  2. Univ. of Florida, Gainesville, FL (United States)
  3. Georgia Inst. of Technology, Atlanta, GA (United States); Huazhong Univ. of Science and Technology, Wuhan (China)
  4. Georgia Inst. of Technology, Atlanta, GA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME)
Sponsoring Org.:
Fundamental Research Funds for the Central Universities; China Scholarship Council (CSC); USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1847524
Grant/Contract Number:  
AC05-00OR22725; SC0012577; FG02-17ER16362
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 13; Journal Issue: 51; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; metal−organic frameworks; materials; adsorption; selectivity; flexibility

Citation Formats

Yu, Zhenzi, Anstine, Dylan M., Boulfelfel, Salah Eddine, Gu, Chenkai, Colina, Coray M., and Sholl, David S. Incorporating Flexibility Effects into Metal–Organic Framework Adsorption Simulations Using Different Models. United States: N. p., 2021. Web. doi:10.1021/acsami.1c20583.
Yu, Zhenzi, Anstine, Dylan M., Boulfelfel, Salah Eddine, Gu, Chenkai, Colina, Coray M., & Sholl, David S. Incorporating Flexibility Effects into Metal–Organic Framework Adsorption Simulations Using Different Models. United States. https://doi.org/10.1021/acsami.1c20583
Yu, Zhenzi, Anstine, Dylan M., Boulfelfel, Salah Eddine, Gu, Chenkai, Colina, Coray M., and Sholl, David S. Mon . "Incorporating Flexibility Effects into Metal–Organic Framework Adsorption Simulations Using Different Models". United States. https://doi.org/10.1021/acsami.1c20583. https://www.osti.gov/servlets/purl/1847524.
@article{osti_1847524,
title = {Incorporating Flexibility Effects into Metal–Organic Framework Adsorption Simulations Using Different Models},
author = {Yu, Zhenzi and Anstine, Dylan M. and Boulfelfel, Salah Eddine and Gu, Chenkai and Colina, Coray M. and Sholl, David S.},
abstractNote = {High-throughput calculations based on molecular simulations to predict the adsorption of molecules inside metal–organic frameworks (MOFs) have become a useful complement to experimental efforts to identify promising adsorbents for chemical separations and storage. For computational convenience, all existing efforts of this kind have relied on simulations in which the MOF is approximated as rigid. In this paper, we use extensive adsorption–relaxation simulations that fully include MOF flexibility effects to explore the validity of the rigid framework approximation. We also examine the accuracy of several approximate methods to incorporate framework flexibility that are more computationally efficient than adsorption–relaxation calculations. We first benchmark various models of MOF flexibility for four MOFs with well-established CO2 experimental consensus isotherms. We then consider a range of adsorption properties, including Henry’s constants, nondilute loadings, and adsorption selectivity, for seven adsorbates in 15 MOFs randomly selected from the CoRE MOF database. Our results indicate that in many MOFs adsorption–relaxation simulations are necessary to make quantitative predictions of adsorption, particularly for adsorption at dilute concentrations, although more standard calculations based on rigid structures can provide useful information. Finally, we investigate whether a correlation exists between the elastic properties of empty MOFs and the importance of including framework flexibility in making accurate predictions of molecular adsorption. Our results did not identify a simple correlation of this type.},
doi = {10.1021/acsami.1c20583},
journal = {ACS Applied Materials and Interfaces},
number = 51,
volume = 13,
place = {United States},
year = {Mon Dec 20 00:00:00 EST 2021},
month = {Mon Dec 20 00:00:00 EST 2021}
}

Works referenced in this record:

The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials
journal, April 2017

  • Witman, Matthew; Ling, Sanliang; Jawahery, Sudi
  • Journal of the American Chemical Society, Vol. 139, Issue 15
  • DOI: 10.1021/jacs.7b01688

Molecular Dynamics Simulations of Polymers with Stiff Backbones Interacting with Single-Walled Carbon Nanotubes
journal, July 2010

  • Tallury, Syamal S.; Pasquinelli, Melissa A.
  • The Journal of Physical Chemistry B, Vol. 114, Issue 29
  • DOI: 10.1021/jp101191j

The osmotic framework adsorbed solution theory: predicting mixture coadsorption in flexible nanoporous materials
journal, January 2010

  • Coudert, François-Xavier
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 36
  • DOI: 10.1039/c003434g

On the inner workings of Monte Carlo codes
journal, December 2013


UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology
journal, January 2016

  • Manz, Thomas A.; Limas, Nidia Gabaldon
  • RSC Advances, Vol. 6, Issue 53
  • DOI: 10.1039/C6RA04656H

Reliably Modeling the Mechanical Stability of Rigid and Flexible Metal–Organic Frameworks
journal, November 2017

  • Rogge, Sven M. J.; Waroquier, Michel; Van Speybroeck, Veronique
  • Accounts of Chemical Research, Vol. 51, Issue 1
  • DOI: 10.1021/acs.accounts.7b00404

Influence of Framework Flexibility on the Adsorption Properties of Hydrocarbons in the Zeolite Silicalite
journal, December 2002

  • Vlugt, Thijs J. H.; Schenk, Merijn
  • The Journal of Physical Chemistry B, Vol. 106, Issue 49
  • DOI: 10.1021/jp0263931

Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes
journal, August 2000

  • Wick, Collin D.; Martin, Marcus G.; Siepmann, J. Ilja
  • The Journal of Physical Chemistry B, Vol. 104, Issue 33
  • DOI: 10.1021/jp001044x

How Reproducible Are Isotherm Measurements in Metal–Organic Frameworks?
journal, November 2017


Modeling Gas Adsorption in Flexible Metal–Organic Frameworks via Hybrid Monte Carlo/Molecular Dynamics Schemes
journal, January 2019

  • Rogge, Sven M. J.; Goeminne, Ruben; Demuynck, Ruben
  • Advanced Theory and Simulations, Vol. 2, Issue 4
  • DOI: 10.1002/adts.201800177

Absolute Molecular Sieve Separation of Ethylene/Ethane Mixtures with Silver Zeolite A
journal, August 2012

  • Aguado, Sonia; Bergeret, Gérard; Daniel, Cecile
  • Journal of the American Chemical Society, Vol. 134, Issue 36
  • DOI: 10.1021/ja305663k

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Multistep N 2 Breathing in the Metal−Organic Framework Co(1,4-benzenedipyrazolate)
journal, October 2010

  • Salles, Fabrice; Maurin, Guillaume; Serre, Christian
  • Journal of the American Chemical Society, Vol. 132, Issue 39
  • DOI: 10.1021/ja104357r

A Strong Test of Atomically Detailed Models of Molecular Adsorption in Zeolites Using Multilaboratory Experimental Data for CO 2 Adsorption in Ammonium ZSM-5
journal, December 2019

  • Fang, Hanjun; Findley, John; Muraro, Giovanni
  • The Journal of Physical Chemistry Letters, Vol. 11, Issue 2
  • DOI: 10.1021/acs.jpclett.9b02986

Sorption-Induced Structural Transition of Zeolitic Imidazolate Framework-8: A Hybrid Molecular Simulation Study
journal, February 2013

  • Zhang, Liling; Hu, Zhongqiao; Jiang, Jianwen
  • Journal of the American Chemical Society, Vol. 135, Issue 9
  • DOI: 10.1021/ja401129h

Chemically Meaningful Atomic Charges That Reproduce the Electrostatic Potential in Periodic and Nonperiodic Materials
journal, July 2010

  • Manz, Thomas A.; Sholl, David S.
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 8
  • DOI: 10.1021/ct100125x

Effect of Framework Flexibility on C 8 Aromatic Adsorption at High Loadings in Metal–Organic Frameworks
journal, December 2015


Adsorption space for microporous polymers with diverse adsorbate species
journal, April 2021


Accurate Characterization of the Pore Volume in Microporous Crystalline Materials
journal, July 2017


Sustainable Separations of C 4 -Hydrocarbons by Using Microporous Materials
journal, September 2017


Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials
journal, January 2016

  • Limas, Nidia Gabaldon; Manz, Thomas A.
  • RSC Advances, Vol. 6, Issue 51
  • DOI: 10.1039/C6RA05507A

Interpretable Machine Learning-Based Predictions of Methane Uptake Isotherms in Metal–Organic Frameworks
journal, May 2021


Molecular modelling and machine learning for high-throughput screening of metal-organic frameworks for hydrogen storage
journal, April 2019


Metal–Organic Frameworks for Xylene Separation: From Computational Screening to Machine Learning
journal, April 2021

  • Qiao, Zhiwei; Yan, Yaling; Tang, Yaxing
  • The Journal of Physical Chemistry C, Vol. 125, Issue 14
  • DOI: 10.1021/acs.jpcc.0c10773

Does repeat synthesis in materials chemistry obey a power law?
journal, December 2019

  • Agrawal, Mayank; Han, Rebecca; Herath, Dinushka
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 2
  • DOI: 10.1073/pnas.1918484117

The studies on gas adsorption properties of MIL-53 series MOFs materials
journal, August 2017

  • Jiao, Yuqiu; Li, Zhenyu; Ma, Yue
  • AIP Advances, Vol. 7, Issue 8
  • DOI: 10.1063/1.4999914

Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials
journal, February 2012


Structure-Mechanical Stability Relations of Metal-Organic Frameworks via Machine Learning
journal, July 2019


seaborn: statistical data visualization
journal, April 2021


RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials
journal, February 2015


Modeling Adsorption and Self-Diffusion of Methane in LTA Zeolites: The Influence of Framework Flexibility
journal, August 2010

  • García-Sánchez, A.; Dubbeldam, D.; Calero, S.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 35
  • DOI: 10.1021/jp1059215

On flexible force fields for metal-organic frameworks: Recent developments and future prospects
journal, March 2018

  • Heinen, Jurn; Dubbeldam, David
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 8, Issue 4
  • DOI: 10.1002/wcms.1363

The effect of anisotropic thermal vibration on the atomic scattering factor
journal, July 1954


Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory
journal, August 2015

  • Walton, Krista S.; Sholl, David S.
  • AIChE Journal, Vol. 61, Issue 9
  • DOI: 10.1002/aic.14878

Osmotic ensemble methods for predicting adsorption-induced structural transitions in nanoporous materials using molecular simulations
journal, May 2011

  • Zang, Ji; Nair, Sankar; Sholl, David S.
  • The Journal of Chemical Physics, Vol. 134, Issue 18
  • DOI: 10.1063/1.3586807

Effects of Intrinsic Flexibility on Adsorption Properties of Metal–Organic Frameworks at Dilute and Nondilute Loadings
journal, July 2019

  • Agrawal, Mayank; Sholl, David S.
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 34
  • DOI: 10.1021/acsami.9b10622

Extension of the Universal Force Field for Metal–Organic Frameworks
journal, September 2016

  • Coupry, Damien E.; Addicoat, Matthew A.; Heine, Thomas
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 10
  • DOI: 10.1021/acs.jctc.6b00664

Metal–organic frameworks with wine-rack motif: What determines their flexibility and elastic properties?
journal, May 2013

  • Ortiz, Aurélie U.; Boutin, A.; Fuchs, Alain H.
  • The Journal of Chemical Physics, Vol. 138, Issue 17
  • DOI: 10.1063/1.4802770

Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites
journal, August 2001

  • Talu, Orhan; Myers, Alan L.
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 187-188, p. 83-93
  • DOI: 10.1016/S0927-7757(01)00628-8

Gate opening effect for carbon dioxide in ZIF-8 by molecular dynamics – Confirmed, but at high CO2 pressure
journal, March 2016


Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019
journal, November 2019

  • Chung, Yongchul G.; Haldoupis, Emmanuel; Bucior, Benjamin J.
  • Journal of Chemical & Engineering Data, Vol. 64, Issue 12
  • DOI: 10.1021/acs.jced.9b00835

Simulating Enhanced Methane Deliverable Capacity of Guest Responsive Pores in Intrinsically Flexible MOFs
journal, September 2019

  • Witman, Matthew; Wright, Bradley; Smit, Berend
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 19
  • DOI: 10.1021/acs.jpclett.9b02449

Emerging materials intelligence ecosystems propelled by machine learning
journal, November 2020


A Database of Porous Rigid Amorphous Materials
journal, August 2020


Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks
journal, January 2019

  • Bucior, Benjamin J.; Bobbitt, N. Scott; Islamoglu, Timur
  • Molecular Systems Design & Engineering, Vol. 4, Issue 1
  • DOI: 10.1039/C8ME00050F

Anisotropic Elastic Properties of Flexible Metal-Organic Frameworks: How Soft are Soft Porous Crystals?
journal, November 2012


Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen
journal, July 2001

  • Potoff, Jeffrey J.; Siepmann, J. Ilja
  • AIChE Journal, Vol. 47, Issue 7, p. 1676-1682
  • DOI: 10.1002/aic.690470719

Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?
journal, August 2012

  • Farha, Omar K.; Eryazici, Ibrahim; Jeong, Nak Cheon
  • Journal of the American Chemical Society, Vol. 134, Issue 36, p. 15016-15021
  • DOI: 10.1021/ja3055639

Construction of an Anion-Pillared MOF Database and the Screening of MOFs Suitable for Xe/Kr Separation
journal, March 2021

  • Gu, Chenkai; Yu, Zhenzi; Liu, Jing
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 9
  • DOI: 10.1021/acsami.1c00152

Large-scale screening of hypothetical metal–organic frameworks
journal, November 2011

  • Wilmer, Christopher E.; Leaf, Michael; Lee, Chang Yeon
  • Nature Chemistry, Vol. 4, Issue 2, p. 83-89
  • DOI: 10.1038/nchem.1192

Modeling of adsorption of CO2 in the deformed pores of MIL-53(Al)
journal, March 2017

  • Dundar, Ege; Chanut, Nicolas; Formalik, Filip
  • Journal of Molecular Modeling, Vol. 23, Issue 4
  • DOI: 10.1007/s00894-017-3281-4

Mesoporous metal–organic framework materials
journal, January 2012

  • Xuan, Weimin; Zhu, Chengfeng; Liu, Yan
  • Chem. Soc. Rev., Vol. 41, Issue 5
  • DOI: 10.1039/C1CS15196G

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Constant pressure molecular dynamics algorithms
journal, September 1994

  • Martyna, Glenn J.; Tobias, Douglas J.; Klein, Michael L.
  • The Journal of Chemical Physics, Vol. 101, Issue 5
  • DOI: 10.1063/1.467468

Large-Scale Refinement of Metal−Organic Framework Structures Using Density Functional Theory
journal, November 2016


Topologically Guided, Automated Construction of Metal–Organic Frameworks and Their Evaluation for Energy-Related Applications
journal, September 2017

  • Colón, Yamil J.; Gómez-Gualdrón, Diego A.; Snurr, Randall Q.
  • Crystal Growth & Design, Vol. 17, Issue 11
  • DOI: 10.1021/acs.cgd.7b00848

Molecular simulation of zeolite flexibility
journal, December 2013


Selecting Adsorbents to Separate Diverse Near-Azeotropic Chemicals
journal, January 2020

  • Gharagheizi, Farhad; Tang, Dai; Sholl, David S.
  • The Journal of Physical Chemistry C, Vol. 124, Issue 6
  • DOI: 10.1021/acs.jpcc.9b10955