DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The synergetic interaction between $$\mathrm{LiNO_3}$$ and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries

Abstract

LiNO3 has been widely used as an effective electrolyte additive in lithium-sulfur (Li-S) batteries to suppress the polysulfide shuttle effect. To better understand the mechanism of suppressed shuttle effect by LiNO3, herein we report a comprehensive investigation of the influence of LiNO3 additive on the formation process of the solid electrolyte interphase (SEI) layer on lithium anode of Li-S batteries by operando X-ray absorption spectroscopy (XAS). We observed that a compact and stable SEI layer composed of Li2SO3 and Li2SO4 on top of lithium anode is formed during the initial discharge process due to the synergetic effect of shuttled polysulfides and LiNO3, which can effectively suppress the subsequent reaction between polysulfides in electrolyte and lithium metal and thus result in the alleviation of polysulfide shuttle effect. In contrast, when using electrolyte without LiNO3, the shuttled polysulfides continuously react with lithium metal to form insulating Li2S on lithium anode, leading to the irreversible capacity loss. Our present operando XAS study provides a valuable insight into the important role of LiNO3 for the protection of lithium anodes, which will be beneficial for the further development of new electrolyte additives for high-performance Li-S batteries.

Authors:
 [1];  [1];  [2];  [3];  [1];  [4]
  1. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  3. Wuhan University (China)
  4. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); University of California, Santa Cruz, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); USDOE Office of Science (SC), Basic Energy Sciences (BES); National Key Research and Development Program of China; National Natural Science Fund for Distinguished Young Scholars
OSTI Identifier:
1559789
Alternate Identifier(s):
OSTI ID: 1496485
Grant/Contract Number:  
AC02-05CH11231; 2016YFA0202603; 51425204
Resource Type:
Accepted Manuscript
Journal Name:
Energy Storage Materials
Additional Journal Information:
Journal Volume: 11; Journal Issue: C; Journal ID: ISSN 2405-8297
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium anode; energy storage; sulfur; In-situ and operando; x-ray absorption spectroscopy

Citation Formats

Zhang, Liang, Ling, Min, Feng, Jun, Mai, Liqiang, Liu, Gao, and Guo, Jinghua. The synergetic interaction between $\mathrm{LiNO_3}$ and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries. United States: N. p., 2018. Web. doi:10.1016/j.ensm.2017.09.001.
Zhang, Liang, Ling, Min, Feng, Jun, Mai, Liqiang, Liu, Gao, & Guo, Jinghua. The synergetic interaction between $\mathrm{LiNO_3}$ and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries. United States. https://doi.org/10.1016/j.ensm.2017.09.001
Zhang, Liang, Ling, Min, Feng, Jun, Mai, Liqiang, Liu, Gao, and Guo, Jinghua. Fri . "The synergetic interaction between $\mathrm{LiNO_3}$ and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries". United States. https://doi.org/10.1016/j.ensm.2017.09.001. https://www.osti.gov/servlets/purl/1559789.
@article{osti_1559789,
title = {The synergetic interaction between $\mathrm{LiNO_3}$ and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries},
author = {Zhang, Liang and Ling, Min and Feng, Jun and Mai, Liqiang and Liu, Gao and Guo, Jinghua},
abstractNote = {LiNO3 has been widely used as an effective electrolyte additive in lithium-sulfur (Li-S) batteries to suppress the polysulfide shuttle effect. To better understand the mechanism of suppressed shuttle effect by LiNO3, herein we report a comprehensive investigation of the influence of LiNO3 additive on the formation process of the solid electrolyte interphase (SEI) layer on lithium anode of Li-S batteries by operando X-ray absorption spectroscopy (XAS). We observed that a compact and stable SEI layer composed of Li2SO3 and Li2SO4 on top of lithium anode is formed during the initial discharge process due to the synergetic effect of shuttled polysulfides and LiNO3, which can effectively suppress the subsequent reaction between polysulfides in electrolyte and lithium metal and thus result in the alleviation of polysulfide shuttle effect. In contrast, when using electrolyte without LiNO3, the shuttled polysulfides continuously react with lithium metal to form insulating Li2S on lithium anode, leading to the irreversible capacity loss. Our present operando XAS study provides a valuable insight into the important role of LiNO3 for the protection of lithium anodes, which will be beneficial for the further development of new electrolyte additives for high-performance Li-S batteries.},
doi = {10.1016/j.ensm.2017.09.001},
journal = {Energy Storage Materials},
number = C,
volume = 11,
place = {United States},
year = {Fri Sep 21 00:00:00 EDT 2018},
month = {Fri Sep 21 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 119 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

An Elastic, Conductive, Electroactive Nanocomposite Binder for Flexible Sulfur Cathodes in Lithium-Sulfur Batteries
journal, September 2016


Effect of Discharge Cutoff Voltage on Reversibility of Lithium/Sulfur Batteries with LiNO 3 -Contained Electrolyte
journal, January 2012

  • Zhang, Sheng S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.002207jes

Sulfiphilic Nickel Phosphosulfide Enabled Li 2 S Impregnation in 3D Graphene Cages for Li-S Batteries
journal, January 2017


Demonstration of highly efficient lithium–sulfur batteries
journal, January 2015

  • Xu, Rui; Li, James C. M.; Lu, Jun
  • Journal of Materials Chemistry A, Vol. 3, Issue 8
  • DOI: 10.1039/C4TA06641C

Role of LiNO3 in rechargeable lithium/sulfur battery
journal, May 2012


State-of-the-art characterization techniques for advanced lithium-ion batteries
journal, March 2017


Li 2 S Film Formation on Lithium Anode Surface of Li–S batteries
journal, February 2016

  • Liu, Zhixiao; Bertolini, Samuel; Balbuena, Perla B.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 7
  • DOI: 10.1021/acsami.5b11803

Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
journal, February 2017


Operando Characterization of Intermediates Produced in a Lithium-Sulfur Battery
journal, January 2015

  • Gorlin, Yelena; Siebel, Armin; Piana, Michele
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0081507jes

Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Understanding the Charging Mechanism of Lithium-Sulfur Batteries Using Spatially Resolved Operando X-Ray Absorption Spectroscopy
journal, January 2016

  • Gorlin, Yelena; Patel, Manu U. M.; Freiberg, Anna
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0631606jes

Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte
journal, November 2011


Designing high-energy lithium–sulfur batteries
journal, January 2016

  • Seh, Zhi Wei; Sun, Yongming; Zhang, Qianfan
  • Chemical Society Reviews, Vol. 45, Issue 20
  • DOI: 10.1039/C5CS00410A

A New Type of Multifunctional Polar Binder: Toward Practical Application of High Energy Lithium Sulfur Batteries
journal, February 2017


Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery
journal, January 2016


Li 2 S 5 -based ternary-salt electrolyte for robust lithium metal anode
journal, April 2016


Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries
journal, February 2017


X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components
journal, February 2014

  • Patel, Manu U. M.; Arčon, Iztok; Aquilanti, Giuliana
  • ChemPhysChem, Vol. 15, Issue 5
  • DOI: 10.1002/cphc.201300972

Molecular speciation of sulfur in solid oxide fuel cell anodes with X-ray absorption spectroscopy
journal, September 2008


On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium-Sulfur Batteries
journal, October 2016

  • Peng, Hong-Jie; Zhang, Ge; Chen, Xiang
  • Angewandte Chemie International Edition, Vol. 55, Issue 42
  • DOI: 10.1002/anie.201605676

A new finding on the role of LiNO3 in lithium-sulfur battery
journal, August 2016


Polysulfide Shuttle Study in the Li/S Battery System
journal, January 2004

  • Mikhaylik, Yuriy V.; Akridge, James R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 11, p. A1969-A1976
  • DOI: 10.1149/1.1806394

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design
journal, April 2016

  • Tao, Xinyong; Wang, Jianguo; Liu, Chong
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11203

A new direction for the performance improvement of rechargeable lithium/sulfur batteries
journal, February 2012


Operando Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst
journal, June 2015

  • Kornienko, Nikolay; Resasco, Joaquin; Becknell, Nigel
  • Journal of the American Chemical Society, Vol. 137, Issue 23
  • DOI: 10.1021/jacs.5b03545

Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy
journal, September 2013

  • Cuisinier, Marine; Cabelguen, Pierre-Etienne; Evers, Scott
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 19
  • DOI: 10.1021/jz401763d

In Situ X-ray Absorption Spectroscopy Studies of Discharge Reactions in a Thick Cathode of a Lithium Sulfur Battery
journal, December 2016

  • Wujcik, Kevin H.; Wang, Dunyang Rita; Pascal, Tod A.
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.1441614jes

A highly efficient polysulfide mediator for lithium–sulfur batteries
journal, January 2015

  • Liang, Xiao; Hart, Connor; Pang, Quan
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6682

Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

The Significance of Elemental Sulfur Dissolution in Liquid Electrolyte Lithium Sulfur Batteries
journal, October 2016

  • Harks, Peter Paul R. M. L.; Robledo, Carla B.; Verhallen, Tomas W.
  • Advanced Energy Materials, Vol. 7, Issue 3
  • DOI: 10.1002/aenm.201601635

Methods and Protocols for Electrochemical Energy Storage Materials Research
journal, November 2016


X-ray Absorption Spectra of Dissolved Polysulfides in Lithium–Sulfur Batteries from First-Principles
journal, April 2014

  • Pascal, Tod A.; Wujcik, Kevin H.; Velasco-Velez, Juan
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 9
  • DOI: 10.1021/jz500260s

Mechanistic insights into operational lithium–sulfur batteries by in situ X-ray diffraction and absorption spectroscopy
journal, January 2014

  • Lowe, Michael A.; Gao, Jie; Abruña, Héctor D.
  • RSC Advances, Vol. 4, Issue 35
  • DOI: 10.1039/c4ra01388c

The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries
journal, January 2016

  • Jozwiuk, Anna; Berkes, Balázs B.; Weiß, Thomas
  • Energy & Environmental Science, Vol. 9, Issue 8
  • DOI: 10.1039/C6EE00789A

Liquid-Phase Electrochemical Scanning Electron Microscopy for In Situ Investigation of Lithium Dendrite Growth and Dissolution
journal, January 2017


Stabilized Lithium–Metal Surface in a Polysulfide-Rich Environment of Lithium–Sulfur Batteries
journal, July 2014

  • Zu, Chenxi; Manthiram, Arumugam
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 15
  • DOI: 10.1021/jz501352e

Track batteries degrading in real time
journal, June 2017

  • Mai, Liqiang; Yan, Mengyu; Zhao, Yunlong
  • Nature, Vol. 546, Issue 7659
  • DOI: 10.1038/546469a

Batteries: A Graphene-Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium-Sulfur Batteries (Adv. Mater. 4/2014)
journal, January 2014


Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects
journal, November 2015


A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance
journal, October 2013

  • Li, Weiyang; Zhang, Qianfan; Zheng, Guangyuan
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl403130h

Lithium–sulfur batteries: from liquid to solid cells
journal, January 2015

  • Lin, Zhan; Liang, Chengdu
  • Journal of Materials Chemistry A, Vol. 3, Issue 3
  • DOI: 10.1039/C4TA04727C

Works referencing / citing this record:

Methods to Improve Lithium Metal Anode for Li-S Batteries
journal, December 2019