DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-assembly of Janus Dumbbell Nanocrystals and Their Enhanced Surface Plasmon Resonance

Abstract

Self-assembly is a critical process that can greatly expand the existing structures and lead to new functionality of nanoparticle systems. Multicomponent superstructures self-assembled from nanocrystals have shown promise as multifunctional materials for various applications. Despite recent progress in assembly of homogeneous nanocrystals, synthesis and self-assembly of Janus nanocrystals with contrasting surface chemistry remains a significant challenge. Herein, we designed a novel Janus nanocrystal platform to control the self-assembly of nanoparticles in aqueous solutions by balancing the hydrophobic and hydrophilic moieties. A series of superstructures have been assembled by systematically varying the Janus balance and assembly conditions. Janus Au–Fe3O4 dumbbell nanocrystals (<20 nm) were synthesized with the hydrophobic ligands coated on the Au lobe and negatively charged hydrophilic ligands coated on the Fe3O4 lobe. We systematically fine-tune the lobe size ratio, surface coating, external conditions, and even additional growth of Au nanocrystal domains on the Au lobe of dumbbell nanoparticles (Au–Au–Fe3O4) to harvest self-assembly structures including clusters, chains, vesicles, and capsules. It was discovered that in all these assemblies the hydrophobic Au lobes preferred to stay together. In addition, these superstructures clearly demonstrated different levels of enhanced surface plasmon resonance that is directly correlated with the Au coupling in the assemblymore » structure. The strong interparticle plasmonic coupling displayed a red-shift in surface plasmon resonance, with larger structures formed by Au–Au–Fe3O4 assembly extending into the near-infrared region. Self-assembly of Janus dumbbell nanocrystals can also be reversible under different pH values. In conclusion, the biphasic Janus dumbbell nanocrystals offer a platform for studying the novel interparticle coupling and open up opportunities in applications including sensing, disease diagnoses, and therapy.« less

Authors:
 [1];  [1]; ORCiD logo [1]; ORCiD logo [2];  [1];  [1];  [1];  [3];  [1]; ORCiD logo [3]
  1. Iowa State Univ., Ames, IA (United States)
  2. Ames Lab., Ames, IA (United States)
  3. Ames Lab. and Iowa State Univ., Ames, IA (United States)
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1494935
Report Number(s):
IS-J-9880
Journal ID: ISSN 1530-6984
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 19; Journal Issue: 3; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; Janus balance; Janus nanoparticles; plasmonic coupling; self-assembly; superstructures

Citation Formats

Liu, Fei, Goyal, Shailja, Forrester, Michael, Ma, Tao, Miller, Kyle, Mansoorieh, Yasmeen, Henjum, John, Zhou, Lin, Cochran, Eric, and Jiang, Shan. Self-assembly of Janus Dumbbell Nanocrystals and Their Enhanced Surface Plasmon Resonance. United States: N. p., 2018. Web. doi:10.1021/acs.nanolett.8b04464.
Liu, Fei, Goyal, Shailja, Forrester, Michael, Ma, Tao, Miller, Kyle, Mansoorieh, Yasmeen, Henjum, John, Zhou, Lin, Cochran, Eric, & Jiang, Shan. Self-assembly of Janus Dumbbell Nanocrystals and Their Enhanced Surface Plasmon Resonance. United States. https://doi.org/10.1021/acs.nanolett.8b04464
Liu, Fei, Goyal, Shailja, Forrester, Michael, Ma, Tao, Miller, Kyle, Mansoorieh, Yasmeen, Henjum, John, Zhou, Lin, Cochran, Eric, and Jiang, Shan. Wed . "Self-assembly of Janus Dumbbell Nanocrystals and Their Enhanced Surface Plasmon Resonance". United States. https://doi.org/10.1021/acs.nanolett.8b04464. https://www.osti.gov/servlets/purl/1494935.
@article{osti_1494935,
title = {Self-assembly of Janus Dumbbell Nanocrystals and Their Enhanced Surface Plasmon Resonance},
author = {Liu, Fei and Goyal, Shailja and Forrester, Michael and Ma, Tao and Miller, Kyle and Mansoorieh, Yasmeen and Henjum, John and Zhou, Lin and Cochran, Eric and Jiang, Shan},
abstractNote = {Self-assembly is a critical process that can greatly expand the existing structures and lead to new functionality of nanoparticle systems. Multicomponent superstructures self-assembled from nanocrystals have shown promise as multifunctional materials for various applications. Despite recent progress in assembly of homogeneous nanocrystals, synthesis and self-assembly of Janus nanocrystals with contrasting surface chemistry remains a significant challenge. Herein, we designed a novel Janus nanocrystal platform to control the self-assembly of nanoparticles in aqueous solutions by balancing the hydrophobic and hydrophilic moieties. A series of superstructures have been assembled by systematically varying the Janus balance and assembly conditions. Janus Au–Fe3O4 dumbbell nanocrystals (<20 nm) were synthesized with the hydrophobic ligands coated on the Au lobe and negatively charged hydrophilic ligands coated on the Fe3O4 lobe. We systematically fine-tune the lobe size ratio, surface coating, external conditions, and even additional growth of Au nanocrystal domains on the Au lobe of dumbbell nanoparticles (Au–Au–Fe3O4) to harvest self-assembly structures including clusters, chains, vesicles, and capsules. It was discovered that in all these assemblies the hydrophobic Au lobes preferred to stay together. In addition, these superstructures clearly demonstrated different levels of enhanced surface plasmon resonance that is directly correlated with the Au coupling in the assembly structure. The strong interparticle plasmonic coupling displayed a red-shift in surface plasmon resonance, with larger structures formed by Au–Au–Fe3O4 assembly extending into the near-infrared region. Self-assembly of Janus dumbbell nanocrystals can also be reversible under different pH values. In conclusion, the biphasic Janus dumbbell nanocrystals offer a platform for studying the novel interparticle coupling and open up opportunities in applications including sensing, disease diagnoses, and therapy.},
doi = {10.1021/acs.nanolett.8b04464},
journal = {Nano Letters},
number = 3,
volume = 19,
place = {United States},
year = {Wed Dec 26 00:00:00 EST 2018},
month = {Wed Dec 26 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 50 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Self-Assembly at All Scales
journal, March 2002

  • Whitesides, George M.; Grzybowski, Bartosz
  • Science, Vol. 295, Issue 5564, p. 2418-2421
  • DOI: 10.1126/science.1070821

Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials
journal, August 2016


Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions
journal, June 2015

  • Vogel, Nicolas; Retsch, Markus; Fustin, Charles-André
  • Chemical Reviews, Vol. 115, Issue 13
  • DOI: 10.1021/cr400081d

From dynamic self-assembly to networked chemical systems
journal, January 2017

  • Grzybowski, Bartosz A.; Fitzner, Krzysztof; Paczesny, Jan
  • Chemical Society Reviews, Vol. 46, Issue 18
  • DOI: 10.1039/C7CS00089H

Directing the self-assembly of block copolymers
journal, October 2007


Soft matter
journal, July 1992


Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications
journal, March 2013

  • Walther, Andreas; Müller, Axel H. E.
  • Chemical Reviews, Vol. 113, Issue 7, p. 5194-5261
  • DOI: 10.1021/cr300089t

Fabrication, properties and applications of Janus particles
journal, January 2012

  • Hu, Jing; Zhou, Shuxue; Sun, Yangyi
  • Chemical Society Reviews, Vol. 41, Issue 11
  • DOI: 10.1039/c2cs35032g

Janus Particle Synthesis, Assembly, and Application
journal, July 2017


Influence of Geometries on the Assembly of Snowman-Shaped Janus Nanoparticles
journal, March 2018


Clusters of Charged Janus Spheres
journal, November 2006

  • Hong, Liang; Cacciuto, Angelo; Luijten, Erik
  • Nano Letters, Vol. 6, Issue 11
  • DOI: 10.1021/nl061857i

Supracolloidal Reaction Kinetics of Janus Spheres
journal, January 2011


Directed self-assembly of a colloidal kagome lattice
journal, January 2011

  • Chen, Qian; Bae, Sung Chul; Granick, Steve
  • Nature, Vol. 469, Issue 7330
  • DOI: 10.1038/nature09713

Living Crystals of Light-Activated Colloidal Surfers
journal, January 2013


Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles
journal, June 2013


Stimuli-Responsive Bicomponent Polymer Janus Particles by “Grafting from”/“Grafting to” Approaches
journal, December 2008

  • Berger, Sebastian; Synytska, Alla; Ionov, Leonid
  • Macromolecules, Vol. 41, Issue 24
  • DOI: 10.1021/ma802089h

Dielectrophoretic Assembly of Metallodielectric Janus Particles in AC Electric Fields
journal, December 2008

  • Gangwal, Sumit; Cayre, Olivier J.; Velev, Orlin D.
  • Langmuir, Vol. 24, Issue 23, p. 13312-13320
  • DOI: 10.1021/la8015222

Electric-field–induced assembly and propulsion of chiral colloidal clusters
journal, May 2015

  • Ma, Fuduo; Wang, Sijia; Wu, David T.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 20
  • DOI: 10.1073/pnas.1502141112

Chiral colloidal clusters
journal, September 2008


Linking synchronization to self-assembly using magnetic Janus colloids
journal, November 2012

  • Yan, Jing; Bloom, Moses; Bae, Sung Chul
  • Nature, Vol. 491, Issue 7425, p. 578-581
  • DOI: 10.1038/nature11619

Dumbbell-like Bifunctional Au−Fe 3 O 4 Nanoparticles
journal, February 2005

  • Yu, Heng; Chen, Min; Rice, Philip M.
  • Nano Letters, Vol. 5, Issue 2
  • DOI: 10.1021/nl047955q

Dumbbell-like Au−Fe 3 O 4 Nanoparticles for Target-Specific Platin Delivery
journal, April 2009

  • Xu, Chenjie; Wang, Baodui; Sun, Shouheng
  • Journal of the American Chemical Society, Vol. 131, Issue 12
  • DOI: 10.1021/ja900790v

Dumbbell-like Au-Fe 3 O 4 nanoparticles: a new nanostructure for supercapacitors
journal, January 2015

  • Liu, Sheng; Guo, Shaojun; Sun, Shouheng
  • Nanoscale, Vol. 7, Issue 11
  • DOI: 10.1039/C5NR00135H

Amphiphilic modification and asymmetric silica encapsulation of hydrophobic Au–Fe 3 O 4 dumbbell nanoparticles
journal, January 2014

  • Wu, Binghui; Tang, Shaoheng; Chen, Mei
  • Chem. Commun., Vol. 50, Issue 2
  • DOI: 10.1039/C3CC47634K

Controlled synthesis of Au–Fe heterodimer nanoparticles and their conversion into Au–Fe 3 O 4 heterostructured nanoparticles
journal, January 2016

  • Jiang, Guangming; Huang, Yuxi; Zhang, Sen
  • Nanoscale, Vol. 8, Issue 41
  • DOI: 10.1039/C6NR06395K

Preparation and Controlled Self-Assembly of Janus Magnetic Nanoparticles
journal, October 2007

  • Lattuada, Marco; Hatton, T. Alan
  • Journal of the American Chemical Society, Vol. 129, Issue 42
  • DOI: 10.1021/ja0740521

Versatile Solid Phase Synthesis of Gold Nanoparticle Dimers Using an Asymmetric Functionalization Approach
journal, May 2007

  • Sardar, Rajesh; Heap, Tyler B.; Shumaker-Parry, Jennifer S.
  • Journal of the American Chemical Society, Vol. 129, Issue 17
  • DOI: 10.1021/ja070933w

Hydrophobic assembly of gold nanoparticles into plasmonic oligomers with Langmuir–Blodgett film
journal, November 2018

  • Ikegami, Shiho; Yamaguchi, Kenzo; Tanaka, Takuo
  • Japanese Journal of Applied Physics, Vol. 57, Issue 12
  • DOI: 10.7567/JJAP.57.120311

Recent Progress in Syntheses and Applications of Dumbbell-like Nanoparticles
journal, August 2009


Preparation and Self-Assembly of Dendronized Janus Fe 3 O 4 –Pt and Fe 3 O 4 –Au Heterodimers
journal, August 2017


Double-Layered Plasmonic-Magnetic Vesicles by Self-Assembly of Janus Amphiphilic Gold-Iron(II,III) Oxide Nanoparticles
journal, June 2017

  • Song, Jibin; Wu, Binghui; Zhou, Zijian
  • Angewandte Chemie International Edition, Vol. 56, Issue 28
  • DOI: 10.1002/anie.201702572

Hierarchical self-assembly of asymmetric amphiphatic spherical colloidal particles
journal, August 2009


Self-Assembly of Gold Nanoparticles Induced by Poly(oxypropylene)diamines
journal, December 2005

  • Huang, Hsin-Yeh; Chen, Wei-Fu; Kuo, Ping-Lin
  • The Journal of Physical Chemistry B, Vol. 109, Issue 51
  • DOI: 10.1021/jp053880i

Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals
journal, December 2015

  • Ye, Xingchen; Zhu, Chenhui; Ercius, Peter
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10052

Step-Growth Polymerization of Inorganic Nanoparticles
journal, July 2010


Surface patterning of nanoparticles with polymer patches
journal, August 2016

  • Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse
  • Nature, Vol. 538, Issue 7623
  • DOI: 10.1038/nature19089

Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry
journal, June 1995


Self-assembled plasmonic nanostructures
journal, January 2014

  • Klinkova, Anna; Choueiri, Rachelle M.; Kumacheva, Eugenia
  • Chemical Society Reviews, Vol. 43, Issue 11
  • DOI: 10.1039/c3cs60341e

Gold Nanoparticles in Chemical and Biological Sensing
journal, February 2012

  • Saha, Krishnendu; Agasti, Sarit S.; Kim, Chaekyu
  • Chemical Reviews, Vol. 112, Issue 5
  • DOI: 10.1021/cr2001178

Gold and Silver Nanoparticles in Sensing and Imaging:  Sensitivity of Plasmon Response to Size, Shape, and Metal Composition
journal, October 2006

  • Lee, Kyeong-Seok; El-Sayed, Mostafa A.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 39
  • DOI: 10.1021/jp062536y

Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates
journal, August 2005

  • Talley, Chad E.; Jackson, Joseph B.; Oubre, Chris
  • Nano Letters, Vol. 5, Issue 8
  • DOI: 10.1021/nl050928v

Shell-isolated nanoparticle-enhanced Raman spectroscopy
journal, March 2010

  • Li, Jian Feng; Huang, Yi Fan; Ding, Yong
  • Nature, Vol. 464, Issue 7287, p. 392-395
  • DOI: 10.1038/nature08907

The golden age: gold nanoparticles for biomedicine
journal, January 2012

  • Dreaden, Erik C.; Alkilany, Alaaldin M.; Huang, Xiaohua
  • Chem. Soc. Rev., Vol. 41, Issue 7
  • DOI: 10.1039/C1CS15237H

Au nanoparticles target cancer
journal, February 2007


Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity
journal, January 2009

  • Boisselier, Elodie; Astruc, Didier
  • Chemical Society Reviews, Vol. 38, Issue 6
  • DOI: 10.1039/b806051g

Statics and dynamics of worm-like surfactant micelles
journal, August 1990


Works referencing / citing this record:

Alloy, Janus and core–shell nanoparticles: numerical modeling of their nucleation and growth in physical synthesis
journal, January 2019

  • Förster, Georg Daniel; Benoit, Magali; Lam, Julien
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 41
  • DOI: 10.1039/c9cp04231h

Interactions between amphiphilic Janus nanosheets and a nonionic polymer in aqueous and biphasic systems
journal, January 2019

  • Luo, Dan; Zhang, Fanghao; Ding, Fazhu
  • Soft Matter, Vol. 15, Issue 37
  • DOI: 10.1039/c9sm00994a

Janus particles: design, preparation, and biomedical applications
journal, September 2019