skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Semiconducting polymer blends that exhibit stable charge transport at high temperatures

Abstract

Although high-temperature operation (i.e., beyond 150°C) is of great interest for many electronics applications, achieving stable carrier mobilities for organic semiconductors at elevated temperatures is fundamentally challenging. Here, we report a general strategy to make thermally stable high-temperature semiconducting polymer blends, composed of interpenetrating semicrystalline conjugated polymers and high glass-transition temperature insulating matrices. When properly engineered, such polymer blends display a temperature-insensitive charge transport behavior with hole mobility exceeding 2.0 cm2/V·s across a wide temperature range from room temperature up to 220°C in thin-film transistors.

Authors:
ORCiD logo [1];  [1];  [1];  [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Purdue Univ., West Lafayette, IN (United States)
  2. Univ. of California, Santa Cruz, CA (United States)
  3. Stanford Univ., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1490849
Grant/Contract Number:  
1653909; N00014-16-1-2551; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Science
Additional Journal Information:
Journal Volume: 362; Journal Issue: 6419; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
30 DIRECT ENERGY CONVERSION

Citation Formats

Gumyusenge, Aristide, Tran, Dung T., Luo, Xuyi, Pitch, Gregory M., Zhao, Yan, Jenkins, Kaelon A., Dunn, Tim J., Ayzner, Alexander L., Savoie, Brett M., and Mei, Jianguo. Semiconducting polymer blends that exhibit stable charge transport at high temperatures. United States: N. p., 2018. Web. doi:10.1126/science.aau0759.
Gumyusenge, Aristide, Tran, Dung T., Luo, Xuyi, Pitch, Gregory M., Zhao, Yan, Jenkins, Kaelon A., Dunn, Tim J., Ayzner, Alexander L., Savoie, Brett M., & Mei, Jianguo. Semiconducting polymer blends that exhibit stable charge transport at high temperatures. United States. doi:10.1126/science.aau0759.
Gumyusenge, Aristide, Tran, Dung T., Luo, Xuyi, Pitch, Gregory M., Zhao, Yan, Jenkins, Kaelon A., Dunn, Tim J., Ayzner, Alexander L., Savoie, Brett M., and Mei, Jianguo. Fri . "Semiconducting polymer blends that exhibit stable charge transport at high temperatures". United States. doi:10.1126/science.aau0759. https://www.osti.gov/servlets/purl/1490849.
@article{osti_1490849,
title = {Semiconducting polymer blends that exhibit stable charge transport at high temperatures},
author = {Gumyusenge, Aristide and Tran, Dung T. and Luo, Xuyi and Pitch, Gregory M. and Zhao, Yan and Jenkins, Kaelon A. and Dunn, Tim J. and Ayzner, Alexander L. and Savoie, Brett M. and Mei, Jianguo},
abstractNote = {Although high-temperature operation (i.e., beyond 150°C) is of great interest for many electronics applications, achieving stable carrier mobilities for organic semiconductors at elevated temperatures is fundamentally challenging. Here, we report a general strategy to make thermally stable high-temperature semiconducting polymer blends, composed of interpenetrating semicrystalline conjugated polymers and high glass-transition temperature insulating matrices. When properly engineered, such polymer blends display a temperature-insensitive charge transport behavior with hole mobility exceeding 2.0 cm2/V·s across a wide temperature range from room temperature up to 220°C in thin-film transistors.},
doi = {10.1126/science.aau0759},
journal = {Science},
number = 6419,
volume = 362,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
journal, January 2005

  • Weigend, Florian; Ahlrichs, Reinhart
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 18, p. 3297-3305
  • DOI: 10.1039/b508541a

Complementary Semiconducting Polymer Blends: The Influence of Conjugation-Break Spacer Length in Matrix Polymers
journal, March 2016


A BDOPV-Based Donor-Acceptor Polymer for High-Performance n-Type and Oxygen-Doped Ambipolar Field-Effect Transistors
journal, August 2013


Isoindigo, a Versatile Electron-Deficient Unit For High-Performance Organic Electronics
journal, September 2013

  • Stalder, Romain; Mei, Jianguo; Graham, Kenneth R.
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm402219v

Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold
journal, November 2006

  • Goffri, Shalom; Müller, Christian; Stingelin-Stutzmann, Natalie
  • Nature Materials, Vol. 5, Issue 12
  • DOI: 10.1038/nmat1779

Toward Environmentally Robust Organic Electronics: Approaches and Applications
journal, September 2017

  • Lee, Eun Kwang; Lee, Moo Yeol; Park, Cheol Hee
  • Advanced Materials, Vol. 29, Issue 44
  • DOI: 10.1002/adma.201703638

H- and J-Aggregate Behavior in Polymeric Semiconductors
journal, April 2014


Charge Transport in Organic Semiconductors
journal, April 2007

  • Coropceanu, Veaceslav; Cornil, Jérôme; da Silva Filho, Demetrio A.
  • Chemical Reviews, Vol. 107, Issue 4
  • DOI: 10.1021/cr050140x

The ORCA program system: The ORCA program system
journal, June 2011

  • Neese, Frank
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 1
  • DOI: 10.1002/wcms.81

Two-dimensional charge transport in self-organized, high-mobility conjugated polymers
journal, October 1999

  • Sirringhaus, H.; Brown, P. J.; Friend, R. H.
  • Nature, Vol. 401, Issue 6754, p. 685-688
  • DOI: 10.1038/44359

Large-scale organic nanowire lithography and electronics
journal, April 2013

  • Min, Sung-Yong; Kim, Tae-Sik; Kim, Beom Joon
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2785

Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors
journal, April 2016

  • Lei, Yanlian; Deng, Ping; Li, Jun
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep24476

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


High-temperature electronics - a role for wide bandgap semiconductors?
journal, June 2002


Taming Charge Transport in Semiconducting Polymers with Branched Alkyl Side Chains
journal, July 2017

  • Schroeder, Bob C.; Kurosawa, Tadanori; Fu, Tianren
  • Advanced Functional Materials, Vol. 27, Issue 34
  • DOI: 10.1002/adfm.201701973

A Robust, High-Temperature Organic Semiconductor
journal, November 2014

  • Kintigh, Jeremy T.; Hodgson, Jennifer L.; Singh, Anup
  • The Journal of Physical Chemistry C, Vol. 118, Issue 46
  • DOI: 10.1021/jp505011x

Wide bandgap compound semiconductors for superior high-voltage unipolar power devices
journal, January 1994

  • Chow, T. P.; Tyagi, R.
  • IEEE Transactions on Electron Devices, Vol. 41, Issue 8
  • DOI: 10.1109/16.297751

Thermal and mechanical cracking in bis(triisopropylsilylethnyl) pentacene thin films
journal, December 2006

  • Chen, Jihua; Tee, Chee Keong; Yang, Junyan
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 44, Issue 24
  • DOI: 10.1002/polb.21007

Stable Electrical Operation of 6H–SiC JFETs and ICs for Thousands of Hours at 500 $^{\circ}\hbox{C}$
journal, May 2008

  • Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu
  • IEEE Electron Device Letters, Vol. 29, Issue 5
  • DOI: 10.1109/LED.2008.919787

Electrical Performance of a Molecular Organic Semiconductor under Thermal Stress
journal, January 2017

  • Seifrid, Martin; Ford, Michael J.; Li, Mingqi
  • Advanced Materials, Vol. 29, Issue 12
  • DOI: 10.1002/adma.201605511

Melt-Processing of Complementary Semiconducting Polymer Blends for High Performance Organic Transistors
journal, December 2016


Symmetry Breaking in Side Chains Leading to Mixed Orientations and Improved Charge Transport in Isoindigo- alt -Bithiophene Based Polymer Thin Films
journal, July 2017

  • Xue, Guobiao; Zhao, Xikang; Qu, Ge
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 30
  • DOI: 10.1021/acsami.7b07624

Development and testing of a general amber force field
journal, January 2004

  • Wang, Junmei; Wolf, Romain M.; Caldwell, James W.
  • Journal of Computational Chemistry, Vol. 25, Issue 9
  • DOI: 10.1002/jcc.20035

Pentacene field-effect transistors on plastic films operating at high temperature above 100°C
journal, October 2004

  • Sekitani, Tsuyoshi; Iba, Shingo; Kato, Yusaku
  • Applied Physics Letters, Vol. 85, Issue 17
  • DOI: 10.1063/1.1812374

Efficient, Stable Bulk Charge Transport in Crystalline/Crystalline Semiconductor–Insulator Blends
journal, November 2009

  • Kumar, Avinesh; Baklar, Mohammed A.; Scott, Ken
  • Advanced Materials, Vol. 21, Issue 44
  • DOI: 10.1002/adma.200900717

A review of high-temperature electronics technology and applications
journal, July 2015

  • Watson, Jeff; Castro, Gustavo
  • Journal of Materials Science: Materials in Electronics, Vol. 26, Issue 12
  • DOI: 10.1007/s10854-015-3459-4

Physical limits and lifetime limitations of semiconductor devices at high temperatures
journal, June 1999


25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon
journal, January 2014


Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
journal, January 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 44
  • DOI: 10.1039/b810189b

    Works referencing / citing this record:

    Interfaces in organic electronics
    journal, July 2019


    Interfaces in organic electronics
    journal, July 2019