DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Unphysical properties of the static quark-antiquark four-point correlator in Landau gauge

Abstract

We consider the four point connected correlator representing a static quark-antiquark pair separated by a spatial distance R , propagating for a Euclidean time T . This function is computed by lattice Monte Carlo in SU(2) pure gauge theory at lattice couplings β=2.2 and β=2.5 in both Coulomb and Landau gauges. The Coulomb gauge correlator is well behaved, and is dominated at large T by a state whose energy grows linearly as σR , with σ the known asymptotic string tension. The connected correlator in Landau gauge behaves differently. At intermediate R there is clear evidence of a linear potential, but the corresponding string tension extrapolates to zero at large T . At large R the connected correlator becomes negative; moreover there are strong finite size effects. These numerical results suggest that unphysical states dominate the large Euclidean time behavior of this Landau gauge correlator.

Authors:
;
Publication Date:
Research Org.:
San Francisco State Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP)
OSTI Identifier:
1490775
Alternate Identifier(s):
OSTI ID: 1631276; OSTI ID: 1862027
Grant/Contract Number:  
SC0013682
Resource Type:
Published Article
Journal Name:
Physical Review. D.
Additional Journal Information:
Journal Name: Physical Review. D. Journal Volume: 99 Journal Issue: 1; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Astronomy & Astrophysics; Physics; Bethe-Salpeter equation; Color confinement; Lattice field theory; Nonperturbative effects in field theory; Quantum field theory

Citation Formats

Greensite, Jeff, and Owen, Evan. Unphysical properties of the static quark-antiquark four-point correlator in Landau gauge. United States: N. p., 2019. Web. doi:10.1103/PhysRevD.99.014506.
Greensite, Jeff, & Owen, Evan. Unphysical properties of the static quark-antiquark four-point correlator in Landau gauge. United States. https://doi.org/10.1103/PhysRevD.99.014506
Greensite, Jeff, and Owen, Evan. Mon . "Unphysical properties of the static quark-antiquark four-point correlator in Landau gauge". United States. https://doi.org/10.1103/PhysRevD.99.014506.
@article{osti_1490775,
title = {Unphysical properties of the static quark-antiquark four-point correlator in Landau gauge},
author = {Greensite, Jeff and Owen, Evan},
abstractNote = {We consider the four point connected correlator representing a static quark-antiquark pair separated by a spatial distance R, propagating for a Euclidean time T. This function is computed by lattice Monte Carlo in SU(2) pure gauge theory at lattice couplings β=2.2 and β=2.5 in both Coulomb and Landau gauges. The Coulomb gauge correlator is well behaved, and is dominated at large T by a state whose energy grows linearly as σR, with σ the known asymptotic string tension. The connected correlator in Landau gauge behaves differently. At intermediate R there is clear evidence of a linear potential, but the corresponding string tension extrapolates to zero at large T. At large R the connected correlator becomes negative; moreover there are strong finite size effects. These numerical results suggest that unphysical states dominate the large Euclidean time behavior of this Landau gauge correlator.},
doi = {10.1103/PhysRevD.99.014506},
journal = {Physical Review. D.},
number = 1,
volume = 99,
place = {United States},
year = {Mon Jan 14 00:00:00 EST 2019},
month = {Mon Jan 14 00:00:00 EST 2019}
}

Works referenced in this record:

Observing long color flux tubes in SU(2) lattice gauge theory
journal, May 1995

  • Bali, Gunnar S.; Schlichter, Christoph; Schilling, Klaus
  • Physical Review D, Vol. 51, Issue 9
  • DOI: 10.1103/PhysRevD.51.5165

<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-01-01">January 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Cardoso, N.; Bicudo, P.; Silva, P. J.</span> </li> <li> Acta Physica Polonica B Proceedings Supplement, Vol. 5, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.5506/APhysPolBSupp.5.1135" class="text-muted" target="_blank" rel="noopener noreferrer">10.5506/APhysPolBSupp.5.1135<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevD.71.051902" target="_blank" rel="noopener noreferrer" class="name">Positivity violation for the lattice Landau gluon propagator<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2005-03-01">March 2005</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Cucchieri, Attilio; Mendes, Tereza; Taurines, Andre R.</span> </li> <li> Physical Review D, Vol. 71, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevD.71.051902" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevD.71.051902<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevD.83.054502" target="_blank" rel="noopener noreferrer" class="name">Instantaneous interquark potential in generalized Landau gauge in SU(3) lattice QCD: A linkage between the Landau and the Coulomb gauges<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2011-03-01">March 2011</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Iritani, Takumi; Suganuma, Hideo</span> </li> <li> Physical Review D, Vol. 83, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevD.83.054502" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevD.83.054502<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0370-2693(87)90974-9" target="_blank" rel="noopener noreferrer" class="name">Nonperturbative BRS invariance and the Gribov problem<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1987-01-01">January 1987</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Neuberger, Herbert</span> </li> <li> Physics Letters B, Vol. 183, Issue 3-4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0370-2693(87)90974-9" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0370-2693(87)90974-9<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevD.90.051501" target="_blank" rel="noopener noreferrer" class="name">BRST-symmetry breaking and Bose-ghost propagator in lattice minimal Landau gauge<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-09-01">September 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Cucchieri, Attilio; Dudal, David; Mendes, Tereza</span> </li> <li> Physical Review D, Vol. 90, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevD.90.051501" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevD.90.051501<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0370-2693(93)91840-J" target="_blank" rel="noopener noreferrer" class="name">The string tension in gauge theories. A suggestion for a new measurement method<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1993-01-01">January 1993</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Marinari, Enzo; Paciello, Maria Luigia; Parisi, Giorgio</span> </li> <li> Physics Letters B, Vol. 298, Issue 3-4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0370-2693(93)91840-J" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0370-2693(93)91840-J<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevD.67.094503" target="_blank" rel="noopener noreferrer" class="name">Coulomb energy, vortices, and confinement<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2003-05-01">May 2003</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Greensite, Jeff; Olejník, Štefan</span> </li> <li> Physical Review D, Vol. 67, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevD.67.094503" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevD.67.094503<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevD.76.114510" target="_blank" rel="noopener noreferrer" class="name">Coulomb gauge Gribov copies and the confining potential<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-12-01">December 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Heinzl, Thomas; Langfeld, Kurt; Lavelle, Martin</span> </li> <li> Physical Review D, Vol. 76, Issue 11</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevD.76.114510" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevD.76.114510<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.ppnp.2016.07.001" target="_blank" rel="noopener noreferrer" class="name">Baryons as relativistic three-quark bound states<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-11-01">November 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Eichmann, Gernot; Sanchis-Alepuz, Hèlios; Williams, Richard</span> </li> <li> Progress in Particle and Nuclear Physics, Vol. 91</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.ppnp.2016.07.001" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.ppnp.2016.07.001<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevD.76.094505" target="_blank" rel="noopener noreferrer" class="name">Scaling behavior and positivity violation of the gluon propagator in full QCD<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-11-01">November 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Bowman, Patrick O.; Heller, Urs M.; Leinweber, Derek B.</span> </li> <li> Physical Review D, Vol. 76, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevD.76.094505" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevD.76.094505<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (11)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_references" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar Records in DOE PAGES and OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1523885-scaling-from-gauge-scalar-radiation-abelian-higgs-string-networks" itemprop="url">Scaling from gauge and scalar radiation in Abelian-Higgs string networks</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Hindmarsh, Mark</span> ; <span class="author">Lizarraga, Joanes</span> ; <span class="author">Urrestilla, Jon</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review D</span> </span> </div> <div class="abstract">In<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> this work, we investigate cosmic string networks in the Abelian Higgs model using data from a campaign of large-scale numerical simulations on lattices of up to <math> <mn>409</mn><msup><mn>6</mn><mn>3</mn></msup> </math> grid points. We observe scaling or self-similarity of the networks over a wide range of scales and estimate the asymptotic values of the mean string separation in horizon length units <math> <mover> <mi>ξ</mi> <mo>˙</mo> </mover> </math> and of the mean square string velocity <math> <msup><mover> <mi>v</mi> <mo>¯</mo> </mover><mn>2</mn></msup> </math> in the continuum and large time limits. The scaling occurs because the strings lose energy into classical radiation of the scalar and gauge fields of the Abelian Higgs model. We quantify the energy loss with a dimensionless radiative efficiency parameter and show that it does not vary significantly with lattice spacing or string separation. This implies that the radiative energy loss underlying the scaling behavior is not a lattice artifact, and justifies the extrapolation of measured network properties to large times for computations of cosmological perturbations. We also show that the core growth method, which increases the defect core width with time to extend the dynamic range of simulations, does not introduce significant systematic error. We compare <math> <mover> <mi>ξ</mi> <mo>˙</mo> </mover> </math> and <math> <msup><mover> <mi>v</mi> <mo>¯</mo> </mover><mn>2</mn></msup> </math> to values measured in simulations using the Nambu-Goto approximation, finding that the latter underestimate the mean string separation by about 25%, and overestimate <math> <msup><mover> <mi>v</mi> <mo>¯</mo> </mover><mn>2</mn></msup> </math> by about 10%. The scaling of the string separation implies that string loops decay by the emission of massive radiation within a Hubble time in field theory simulations, in contrast to the Nambu-Goto scenario which neglects this energy loss mechanism. String loops surviving for only one Hubble time emit much less gravitational radiation than in the Nambu-Goto scenario and are consequently subject to much weaker gravitational wave constraints on their tension.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 62<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1103/PhysRevD.96.023525" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1523885" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1103/PhysRevD.96.023525</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1523885" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1523885" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1648392-muon-connection" itemprop="url">Muon <math> <mi>g</mi> <mo>−</mo> <mn>2</mn> </math> and <math> <mi mathvariant="normal">Δ</mi> <mi>α</mi> </math> connection</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Keshavarzi, Alexander</span> ; <span class="author">Marciano, William J.</span> ; <span class="author">Passera, Massimo</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review. D.</span> </span> </div> <div class="abstract">T<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> he discrepancy between the Standard Model theory and experimental measurement of the muon magnetic moment anomaly, <math> <msub> <mi>a</mi> <mi>μ</mi> </msub><mo>=</mo><mrow> <mo>(</mo> <msub> <mi>g</mi> <mi>μ</mi> </msub> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow><mo>/</mo><mn>2</mn> </math>, is connected to precision electroweak (EW) predictions via their common dependence on hadronic vacuum polarization effects. he same data for the total <math> <mrow> <msup><mrow> <mi>e</mi> </mrow><mrow> <mo>+</mo> </mrow></msup> <msup><mrow> <mi>e</mi> </mrow><mrow> <mo>-</mo> </mrow></msup> <mo>→</mo> <mtext>hadrons</mtext> </mrow> </math> cross section, <math> <msub> <mi>σ</mi> <mrow> <mtext>had</mtext> </mrow> </msub><mo>(</mo><mi>s</mi><mo>)</mo> </math>, are used as input into dispersion relations to estimate the hadronic vacuum polarization contributions, <math> <msubsup> <mi>a</mi> <mi>μ</mi> <mrow> <mtext>had</mtext> <mo>,</mo> <mi>VP</mi> </mrow> </msubsup> </math>, as well as the five-flavor hadronic contribution to the running QED coupling at the <math> <mi>Z</mi> </math>-pole, <math> <mi mathvariant="normal">Δ</mi><msubsup> <mi>α</mi> <mrow> <mtext>had</mtext> </mrow> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </msubsup><mo>(</mo><msubsup> <mi>M</mi> <mi>Z</mi> <mn>2</mn> </msubsup><mo>)</mo> </math>, which enters natural relations and global EW fits. he EW fit prediction of <math> <mi mathvariant="normal">Δ</mi><msubsup> <mi>α</mi> <mrow> <mtext>had</mtext> </mrow> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </msubsup><mo>(</mo><msubsup> <mi>M</mi> <mi>Z</mi> <mn>2</mn> </msubsup><mo>)</mo><mo>=</mo><mn>0.02722</mn><mo>(</mo><mn>41</mn><mo>)</mo> </math> agrees well with <math> <mi mathvariant="normal">Δ</mi><msubsup> <mi>α</mi> <mrow> <mtext>had</mtext> </mrow> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </msubsup><mo>(</mo><msubsup> <mi>M</mi> <mi>Z</mi> <mn>2</mn> </msubsup><mo>)</mo><mo>=</mo><mn>0.02761</mn><mo>(</mo><mn>11</mn><mo>)</mo> </math> obtained from the dispersion relation approach, but exhibits a smaller central value suggestive of a larger discrepancy <math> <mi mathvariant="normal">Δ</mi><msub> <mi>a</mi> <mi>μ</mi> </msub><mo>=</mo><msubsup> <mi>a</mi> <mi>μ</mi> <mi>exp</mi> </msubsup><mo>-</mo><msubsup> <mi>a</mi> <mi>μ</mi> <mrow> <mi>SM</mi> </mrow> </msubsup> </math> than currently expected. Postulating that the <math> <mi mathvariant="normal">Δ</mi><msub> <mi>a</mi> <mi>μ</mi> </msub> </math> difference may be due to unforeseen missing <math> <msub> <mi>σ</mi> <mrow> <mtext>had</mtext> </mrow> </msub><mo>(</mo><mi>s</mi><mo>)</mo> </math> contributions, implications for <math> <msub> <mi>M</mi> <mi>W</mi> </msub> </math>, <math> <msup><mi>sin</mi><mn>2</mn></msup><msubsup> <mi>θ</mi> <mi>eff</mi> <mrow> <mi>lep</mi> </mrow> </msubsup> </math> and <math> <msub> <mi>M</mi> <mi>H</mi> </msub> </math> obtained from global EW fits are investigated. Shifts in <math> <msub> <mi>σ</mi> <mrow> <mtext>had</mtext> </mrow> </msub><mo>(</mo><mi>s</mi><mo>)</mo> </math> needed to bridge <math> <mi mathvariant="normal">Δ</mi><msub> <mi>a</mi> <mi>μ</mi> </msub> </math> are found to be excluded above <math> <msqrt> <mi>s</mi> </msqrt><mo>≳</mo><mn>0.7</mn><mtext> </mtext><mtext> </mtext><mi>GeV</mi> </math> at the 95% C.L. Moreover, prospects for <math> <mi mathvariant="normal">Δ</mi><msub> <mi>a</mi> <mi>μ</mi> </msub> </math> originating below that energy are deemed improbable given the required increases in the hadronic cross section. Such hypothetical changes to the hadronic data are also found to affect other related observables, such as the electron anomaly, <math> <msubsup> <mi>a</mi> <mi>e</mi> <mtext>SM</mtext> </msubsup> </math>, the rescaled ratio <math> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>e</mi> <mo>/</mo> <mi>μ</mi> </mrow> </msub> <mo>=</mo> <mspace></mspace> <mo>(</mo> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <mi>μ</mi> </mrow> </msub> <mo>/</mo> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <mi>e</mi> </mrow> </msub> <msup><mrow> <mo>)</mo> </mrow><mrow> <mn>2</mn> </mrow></msup> <mo>(</mo> <msubsup> <mrow> <mi>a</mi> </mrow> <mrow> <mi>e</mi> </mrow> <mrow> <mtext>had</mtext> <mo>,</mo> <mi>LO</mi> <mtext> </mtext> <mi>VP</mi> </mrow> </msubsup> <mo>/</mo> <msubsup> <mrow> <mi>a</mi> </mrow> <mrow> <mi>μ</mi> </mrow> <mrow> <mtext>had</mtext> <mo>,</mo> <mi>LO</mi> <mtext> </mtext> <mi>VP</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </math>, and the running of the weak mixing angle at low energies, although the consequences of these are currently less constraining.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 135<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1103/PhysRevD.102.033002" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1648392" data-product-type="Journal Article" data-product-subtype="PA" >https://doi.org/10.1103/PhysRevD.102.033002</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="6" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1607819-anatomy-tthh-physics-hl-lhc" itemprop="url">Anatomy of $tthh$ physics at the HL-LHC</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Li, Lingfeng</span> ; <span class="author">Li, Ying-Ying</span> ; <span class="author">Liu, Tao</span> <span class="text-muted pubdata"> - Physical Review. D.</span> </span> </div> <div class="abstract">T<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> he <math> <mi>t</mi><mi>t</mi><mi>h</mi><mi>h</mi> </math> production at colliders contains rich information on the nature of the Higgs boson. In this article, we systematically studied its physics at the high-luminosity Large Hadron Collider (HL-LHC), using exclusive channels with multiple ( <math> <mo>≥</mo><mn>5</mn> </math>) <math> <mi>b</mi> </math>-jets and one lepton ( <math> <mn>5</mn><mi>b</mi><mn>1</mn><mo>ℓ</mo> </math>), multiple ( <math> <mo>≥</mo><mn>5</mn> </math>) <math> <mi>b</mi> </math>-jets and opposite-sign dilepton ( <math> <mn>5</mn><mi>b</mi><mn>2</mn><mo>ℓ</mo> </math>), same-sign dilepton ( <math> <mrow> <mi>SS</mi> <mrow> <mn>2</mn> <mi>ℓ</mi> </mrow> </mrow> </math>), multiple leptons (multi- <math> <mo>ℓ</mo> </math>), and ditau resonance ( <math> <mi>τ</mi><mi>τ</mi> </math>). he scenarios analyzed include: (1) the <math> <mi>t</mi><mi>t</mi><mi>h</mi><mi>h</mi> </math> production in Standard Model; (2) the <math> <mi>t</mi><mi>t</mi><mi>h</mi><mi>h</mi> </math> production mediated by anomalous cubic Higgs self-coupling and <math> <mi>t</mi><mi>t</mi><mi>h</mi><mi>h</mi> </math> contact interaction; (3) heavy Higgs ( <math> <mi>H</mi> </math>) production with <math> <mi>t</mi><mi>t</mi><mi>H</mi><mo>→</mo><mi>t</mi><mi>t</mi><mi>h</mi><mi>h</mi> </math>; and (4) pair production of fermionic top partners ( <math> <mi></mi> </math>) with <math> <mi></mi><mi></mi><mo>→</mo><mi>t</mi><mi>t</mi><mi>h</mi><mi>h</mi> </math>. o address the complication of event topologies and the mess of combinatorial backgrounds, a tool of boosted-decision-tree was applied in the analyses. he <math> <mn>5</mn><mi>b</mi><mn>1</mn><mo>ℓ</mo> </math> and <math> <mrow> <mi>SS</mi> <mrow> <mn>2</mn> <mi>ℓ</mi> </mrow> </mrow> </math> analyses define the two most promising channels. For the nonresonant <math> <mi>t</mi><mi>t</mi><mi>h</mi><mi>h</mi> </math> production, a combination of these exclusive analyses allows for its measurement in the SM with a statistical significance <math> <mo>~</mo><mn>0.9</mn><mi>σ</mi> </math> (with <math> <mi>S</mi><mo>/</mo><mi>B</mi><mo>></mo><mn>1</mn><mo>%</mo> </math>), and may partially break the sensitivity degeneracy with respect to a varying cubic Higgs self-coupling, a difficulty usually thought to exist in gluon fusion di-Higgs analysis at HL-LHC. hese sensitivities were also projected to future hadron colliders at 27 eV and 100 eV. For the resonant <math> <mi>t</mi><mi>t</mi><mi>h</mi><mi>h</mi> </math> productions, the heavy Higgs boson in type II two-Higgs-doublet-model could be efficiently searched for between the mass thresholds <math> <mn>2</mn><msub> <mi>m</mi> <mi>h</mi> </msub><mo><</mo><msub> <mi>m</mi> <mi>H</mi> </msub><mo><</mo><mn>2</mn><msub> <mi>m</mi> <mi>t</mi> </msub> </math> and even beyond that, for relatively small <math> <mi>tan</mi><mi>β</mi> </math> (vacuum alignment), while the fermionic top partners in composite Higgs models could be probed up to <math> <mo>~</mo><mn>1.5</mn><mtext> </mtext><mtext> </mtext><mi>eV</mi> </math> and <math> <mo>~</mo><mn>1.7</mn><mtext> </mtext><mtext> </mtext><mi>eV</mi> </math>, for <math> <mi>Br</mi><mo>(</mo><mi></mi><mo>→</mo><mi>t</mi><mi>h</mi><mo>)</mo><mo>=</mo><mn>25</mn><mo>%</mo> </math> and 50%, respectively.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 1<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1103/PhysRevD.101.055043" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1607819" data-product-type="Journal Article" data-product-subtype="PA" >https://doi.org/10.1103/PhysRevD.101.055043</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="8" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1603738-scattering-studies-low-energy-kaon-proton-femtoscopy-proton-proton-collisions-lhc" itemprop="url">Scattering Studies with Low-Energy Kaon-Proton Femtoscopy in Proton-Proton Collisions at the LHC</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Acharya, S.</span> ; <span class="author">Adamová, D.</span> ; <span class="author">Adhya, S. P.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review Letters</span> </span> </div> <div class="abstract">T<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> he study of the strength and behavior of the antikaon-nucleon ( <math> <mover> <mi>K</mi> <mo>¯</mo> </mover><mi>N</mi> </math>) interaction constitutes one of the key focuses of the strangeness sector in low-energy quantum chromodynamics (QCD). In this Letter a unique high-precision measurement of the strong interaction between kaons and protons, close and above the kinematic threshold, is presented. he femtoscopic measurements of the correlation function at low pair-frame relative momentum of ( <math> <mrow> <mrow> <msup><mrow> <mi>K</mi> </mrow><mrow> <mo>+</mo> </mrow></msup> <mi>p</mi> <mo>⊕</mo> <msup><mrow> <mi>K</mi> </mrow><mrow> <mo>-</mo> </mrow></msup> <mover> <mrow> <mi>p</mi> </mrow> <mrow> <mo>¯</mo> </mrow> </mover> </mrow> </mrow> </math>) and ( <math> <mrow> <msup><mrow> <mi>K</mi> </mrow><mrow> <mo>-</mo> </mrow></msup> <mi>p</mi> <mo>⊕</mo> <msup><mrow> <mi>K</mi> </mrow><mrow> <mo>+</mo> </mrow></msup> <mover> <mrow> <mi>p</mi> </mrow> <mrow> <mo>¯</mo> </mrow> </mover> </mrow> </math>) pairs measured in <math> <mi>p</mi><mi>p</mi> </math> collisions at <math> <msqrt> <mi>s</mi> </msqrt><mo>=</mo><mn>5</mn> </math>, 7, and 13 eV are reported. A structure observed around a relative momentum of <math> <mn>58</mn><mtext></mtext><mtext> </mtext><mi>MeV</mi><mo>/</mo><mi>c</mi> </math> in the measured correlation function of ( <math> <mrow> <mrow> <msup><mrow> <mi>K</mi> </mrow><mrow> <mo>-</mo> </mrow></msup> <mi>p</mi> <mo>⊕</mo> <msup><mrow> <mi>K</mi> </mrow><mrow> <mo>+</mo> </mrow></msup> <mover> <mrow> <mi>p</mi> </mrow> <mrow> <mo>¯</mo> </mrow> </mover> </mrow> </mrow> </math>) with a significance of <math> <mrow> <mn>4.4</mn> <mi>σ</mi> </mrow> </math> constitutes the first experimental evidence for the opening of the <math> <mo>(</mo><mrow> <msup><mover> <mi>K</mi> <mo>¯</mo> </mover><mn>0</mn></msup> <mi>n</mi> </mrow><mo>⊕</mo><mrow> <msup><mi>K</mi><mn>0</mn></msup> <mover> <mi>n</mi> <mo>¯</mo> </mover> </mrow><mo>)</mo> </math> isospin breaking channel due to the mass difference between charged and neutral kaons. he measured correlation functions have been compared to Jülich and Kyoto models in addition to the Coulomb potential. he high-precision data at low relative momenta presented in this work prove femtoscopy to be a powerful complementary tool to scattering experiments and provide new constraints above the <math> <mover> <mi>K</mi> <mo>¯</mo> </mover><mi>N</mi> </math> threshold for low-energy QCD chiral models.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 32<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1103/PhysRevLett.124.092301" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1603738" data-product-type="Journal Article" data-product-subtype="PA" >https://doi.org/10.1103/PhysRevLett.124.092301</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="11" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1862311-dark-energy-survey-year-results-cosmological-constraints-from-galaxy-clustering-weak-lensing" itemprop="url">Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Abbott, T.  M. C.</span> ; <span class="author">Aguena, M.</span> ; <span class="author">Alarcon, A.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review. D.</span> </span> </div> <div class="abstract">In<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> this work, we present the first cosmology results from large-scale structure using the full <math> <mn>5000</mn><mtext> </mtext><mtext></mtext><mrow> <msup><mrow> <mi>deg</mi> </mrow><mrow> <mn>2</mn> </mrow></msup> </mrow> </math> of imaging data from the Dark Energy Survey (DES) Data Release 1. We perform an analysis of large-scale structure combining three two-point correlation functions ( <math> <mrow> <mrow> <mn>3</mn> <mo>×</mo> <mn>2</mn> </mrow> <mi>pt</mi> </mrow> </math>): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens galaxy positions, galaxy–galaxy lensing. To achieve the cosmological precision enabled by these measurements has required updates to nearly every part of the analysis from DES Year 1, including the use of two independent galaxy clustering samples, modeling advances, and several novel improvements in the calibration of gravitational shear and photometric redshift inference. The analysis was performed under strict conditions to mitigate confirmation or observer bias; we describe specific changes made to the lens galaxy sample following unblinding of the results and tests of the robustness of our results to this decision. We model the data within the flat <math> <mi mathvariant="normal">Λ</mi><mi>CDM</mi> </math> and <math> <mi>w</mi><mi>CDM</mi> </math> cosmological models, marginalizing over 25 nuisance parameters. We find consistent cosmological results between the three two-point correlation functions; their combination yields clustering amplitude <math> <msub> <mi>S</mi> <mn>8</mn> </msub><mo>=</mo><mn>0.77</mn><msubsup> <mn>6</mn> <mrow> <mo>-</mo> <mn>0.017</mn> </mrow> <mrow> <mo>+</mo> <mn>0.017</mn> </mrow> </msubsup> </math> and matter density <math> <msub> <mi mathvariant="normal">Ω</mi> <mi mathvariant="normal">m</mi> </msub><mo>=</mo><mn>0.33</mn><msubsup> <mn>9</mn> <mrow> <mo>-</mo> <mn>0.031</mn> </mrow> <mrow> <mo>+</mo> <mn>0.032</mn> </mrow> </msubsup> </math> in <math> <mi mathvariant="normal">Λ</mi><mi>CDM</mi> </math>, mean with 68% confidence limits; <math> <msub> <mi>S</mi> <mn>8</mn> </msub><mo>=</mo><mn>0.77</mn><msubsup> <mn>5</mn> <mrow> <mo>-</mo> <mn>0.024</mn> </mrow> <mrow> <mo>+</mo> <mn>0.026</mn> </mrow> </msubsup> </math>, <math> <msub> <mi mathvariant="normal">Ω</mi> <mi mathvariant="normal">m</mi> </msub><mo>=</mo><mn>0.35</mn><msubsup> <mn>2</mn> <mrow> <mo>-</mo> <mn>0.041</mn> </mrow> <mrow> <mo>+</mo> <mn>0.035</mn> </mrow> </msubsup> </math>, and dark energy equation-of-state parameter <math> <mi>w</mi><mo>=</mo><mo>-</mo><mn>0.9</mn><msubsup> <mn>8</mn> <mrow> <mo>-</mo> <mn>0.20</mn> </mrow> <mrow> <mo>+</mo> <mn>0.32</mn> </mrow> </msubsup> </math> in <math> <mi>w</mi><mi>CDM</mi> </math>. These constraints correspond to an improvement in signal-to-noise of the DES Year 3 <math> <mrow> <mrow> <mn>3</mn> <mo>×</mo> <mn>2</mn> </mrow> <mi>pt</mi> </mrow> </math> data relative to DES Year 1 by a factor of 2.1, about 20% more than expected from the increase in observing area alone. This combination of DES data is consistent with the prediction of the model favored by the <i>Planck</i> 2018 cosmic microwave background (CMB) primary anisotropy data, which is quantified with a probability-to-exceed <math> <mi>p</mi><mo>=</mo><mn>0.13</mn> </math>–0.48. We find better agreement between DES <math> <mrow> <mrow> <mn>3</mn> <mo>×</mo> <mn>2</mn> </mrow> <mi>pt</mi> </mrow> </math> and <i>Planck</i> than in DES Y1, despite the significantly improved precision of both. When combining DES <math> <mrow> <mrow> <mn>3</mn> <mo>×</mo> <mn>2</mn> </mrow> <mi>pt</mi> </mrow> </math> data with available baryon acoustic oscillation, redshift-space distortion, and type Ia supernovae data, we find <math> <mi>p</mi><mo>=</mo><mn>0.34</mn> </math>. Combining all of these datasets with <i>Planck</i> CMB lensing yields joint parameter constraints of <math> <msub> <mi>S</mi> <mn>8</mn> </msub><mo>=</mo><mn>0.81</mn><msubsup> <mn>2</mn> <mrow> <mo>-</mo> <mn>0.008</mn> </mrow> <mrow> <mo>+</mo> <mn>0.008</mn> </mrow> </msubsup> </math>, <math> <msub> <mi mathvariant="normal">Ω</mi> <mi mathvariant="normal">m</mi> </msub><mo>=</mo><mn>0.30</mn><msubsup> <mn>6</mn> <mrow> <mo>-</mo> <mn>0.005</mn> </mrow> <mrow> <mo>+</mo> <mn>0.004</mn> </mrow> </msubsup> </math>, <math> <mi>h</mi><mo>=</mo><mn>0.68</mn><msubsup> <mn>0</mn> <mrow> <mo>-</mo> <mn>0.003</mn> </mrow> <mrow> <mo>+</mo> <mn>0.004</mn> </mrow> </msubsup> </math>, and <math> <mrow> <mo>Σ</mo> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <mi>ν</mi> </mrow> </msub> <mo><</mo> <mn>0.13</mn> <mtext> </mtext> <mtext></mtext> <mi>eV</mi> </mrow> </math> (95% C.L.) in <math> <mi mathvariant="normal">Λ</mi><mi>CDM</mi> </math>; <math> <msub> <mi>S</mi> <mn>8</mn> </msub><mo>=</mo><mn>0.81</mn><msubsup> <mn>2</mn> <mrow> <mo>-</mo> <mn>0.008</mn> </mrow> <mrow> <mo>+</mo> <mn>0.008</mn> </mrow> </msubsup> </math>, <math> <msub> <mi mathvariant="normal">Ω</mi> <mi mathvariant="normal">m</mi> </msub><mo>=</mo><mn>0.30</mn><msubsup> <mn>2</mn> <mrow> <mo>-</mo> <mn>0.006</mn> </mrow> <mrow> <mo>+</mo> <mn>0.006</mn> </mrow> </msubsup> </math>, <math> <mi>h</mi><mo>=</mo><mn>0.68</mn><msubsup> <mn>7</mn> <mrow> <mo>-</mo> <mn>0.007</mn> </mrow> <mrow> <mo>+</mo> <mn>0.006</mn> </mrow> </msubsup> </math>, and <math> <mi>w</mi><mo>=</mo><mo>-</mo><mn>1.03</mn><msubsup> <mn>1</mn> <mrow> <mo>-</mo> <mn>0.027</mn> </mrow> <mrow> <mo>+</mo> <mn>0.030</mn> </mrow> </msubsup> </math> in <math> <mi>w</mi><mi>CDM</mi> </math>.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1103/physrevd.105.023520" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1862311" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1103/physrevd.105.023520</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1862311" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1862311" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9;"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator"/> <br/> <div class="col text-center mt-3"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.osti.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="col text-center small" style="margin-top: 0.5em;margin-bottom:2.0rem;"> <div class="row justify-content-center" style="color:white"> <div class="pure-menu pure-menu-horizontal" style='white-space:normal'> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="https://www.osti.gov/disclaim" class="pure-menu-link" target="_blank" ref="noopener noreferrer"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline d-print-none" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item" style='float:none;'><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span>Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item" style='float:none;'><a target="_blank" title="Vulnerability Disclosure Program" class="pure-menu-link" href="https://doe.responsibledisclosure.com/hc/en-us" rel="noopener noreferrer">Vulnerability Disclosure Program</a></li> <li class="d-block d-lg-none mb-1"></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.facebook.com/ostigov" target="_blank" class="pure-menu-link social ext fa fa-facebook" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Facebook</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://twitter.com/OSTIgov" target="_blank" class="pure-menu-link social ext fa fa-twitter" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Twitter</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.youtube.com/user/ostigov" target="_blank" class="pure-menu-link social ext fa fa-youtube-play" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Youtube</span></a></li> </ul> </div> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.240327.0205.css" rel="stylesheet"> <script src="/pages/js/pages.240327.0205.js"></script><noscript></noscript> <script src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-MML-AM_CHTML' async> MathJax.Hub.Config({ tex2jax: {displayMath: [], inlineMath: [['$$','$$'], ['\\(','\\)']]}, asciimath2jax: {delimiters: []}, skipStartupTypeset: true, webFont: null, CommonHTML: { scale: 84, // mathjx wants to scale everything to 119% by default? mtextFontInherit: true } }); MathJax.Hub.Queue(["Typeset",MathJax.Hub,"item-list"]); MathJax.Hub.Queue(["Typeset",MathJax.Hub,"citation-pagetitle"]); MathJax.Hub.Queue(["Typeset",MathJax.Hub,"citation-abstract"]); </script><noscript></noscript> <script defer src="/pages/js/pages.biblio.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- DOE PAGES v.240327.0205 --> </html>