DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrafast dynamic response of single-crystal β -HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)

Abstract

Here, we report experimental and computational studies of shock wave dynamics in single-crystal β-HMX on an ultrafast time scale. Here, a laser-based compression drive (~1 ns in duration; stresses of up to ~40 GPa) is used to propagate shock waves normal to the (110) and (010) lattice planes. Ultrafast time-domain interferometry measurements reveal distinct, time-dependent relationships between the shock wave velocity and particle velocity for each crystal orientation, which suggest evolving physical processes on a sub-nanosecond time scale. To help interpret the experimental data, elastic shock wave response was simulated using a finite-strain model of crystal thermoelasticity. At early propagation times (<500 ps), the model is in agreement with the data, which indicates that the mechanical response is dominated by thermoelastic deformation. The model agreement depends on the inclusion of nonlinear elastic effects in both the spherical and deviatoric stress-strain responses. This is achieved by employing an equation-of-state and a pressure-dependent stiffness tensor, which was computed via atomistic simulation. At later times (>500 ps), the crystal samples exhibit signatures of inelastic deformation, structural phase transformation, or chemical reaction, depending on the direction of wave propagation.

Authors:
ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1488771
Report Number(s):
LLNL-JRNL-747959
Journal ID: ISSN 0021-8979; 931207
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 123; Journal Issue: 20; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Zaug, Joseph M., Austin, Ryan A., Armstrong, Michael R., Crowhurst, Jonathan C., Goldman, Nir, Ferranti, Louis, Saw, Cheng K., Swan, Raymond A., Gross, Richard, and Fried, Laurence E. Ultrafast dynamic response of single-crystal β -HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine). United States: N. p., 2018. Web. doi:10.1063/1.5029923.
Zaug, Joseph M., Austin, Ryan A., Armstrong, Michael R., Crowhurst, Jonathan C., Goldman, Nir, Ferranti, Louis, Saw, Cheng K., Swan, Raymond A., Gross, Richard, & Fried, Laurence E. Ultrafast dynamic response of single-crystal β -HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine). United States. https://doi.org/10.1063/1.5029923
Zaug, Joseph M., Austin, Ryan A., Armstrong, Michael R., Crowhurst, Jonathan C., Goldman, Nir, Ferranti, Louis, Saw, Cheng K., Swan, Raymond A., Gross, Richard, and Fried, Laurence E. Thu . "Ultrafast dynamic response of single-crystal β -HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)". United States. https://doi.org/10.1063/1.5029923. https://www.osti.gov/servlets/purl/1488771.
@article{osti_1488771,
title = {Ultrafast dynamic response of single-crystal β -HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)},
author = {Zaug, Joseph M. and Austin, Ryan A. and Armstrong, Michael R. and Crowhurst, Jonathan C. and Goldman, Nir and Ferranti, Louis and Saw, Cheng K. and Swan, Raymond A. and Gross, Richard and Fried, Laurence E.},
abstractNote = {Here, we report experimental and computational studies of shock wave dynamics in single-crystal β-HMX on an ultrafast time scale. Here, a laser-based compression drive (~1 ns in duration; stresses of up to ~40 GPa) is used to propagate shock waves normal to the (110) and (010) lattice planes. Ultrafast time-domain interferometry measurements reveal distinct, time-dependent relationships between the shock wave velocity and particle velocity for each crystal orientation, which suggest evolving physical processes on a sub-nanosecond time scale. To help interpret the experimental data, elastic shock wave response was simulated using a finite-strain model of crystal thermoelasticity. At early propagation times (<500 ps), the model is in agreement with the data, which indicates that the mechanical response is dominated by thermoelastic deformation. The model agreement depends on the inclusion of nonlinear elastic effects in both the spherical and deviatoric stress-strain responses. This is achieved by employing an equation-of-state and a pressure-dependent stiffness tensor, which was computed via atomistic simulation. At later times (>500 ps), the crystal samples exhibit signatures of inelastic deformation, structural phase transformation, or chemical reaction, depending on the direction of wave propagation.},
doi = {10.1063/1.5029923},
journal = {Journal of Applied Physics},
number = 20,
volume = 123,
place = {United States},
year = {Thu May 31 00:00:00 EDT 2018},
month = {Thu May 31 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: The experimental target assembly for ultrafast laser-driven shocks in $β$-HMX single-crystals. (a) The ablator/crystal assembly, (110) lattice plane, after 30 (< 2 mJ) ultrafast compression measurements. The ablator pads are 125 x 125 x 2 $µ$m and compression waves are launched normal to the ablator/crystal plane. (b) Anmore » ablation field for compression normal to the (110) lattice plane; the ablators were ripped away from the sample during the measurement. (c) An ablation field for compression normal to the (010) plane. Although the same laser energy was used for both orientations (parts (b) and (c)), the (010)-oriented crystals consistently displayed greater levels of damage.« less

Save / Share:

Works referenced in this record:

Equation of state, phase transition, decomposition of β-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) at high pressures
journal, December 1999

  • Yoo, Choong-Shik; Cynn, Hyunchae
  • The Journal of Chemical Physics, Vol. 111, Issue 22
  • DOI: 10.1063/1.480341

Anisotropic material model and wave propagation simulations for shocked pentaerythritol tetranitrate single crystals
journal, May 2010

  • Winey, J. M.; Gupta, Y. M.
  • Journal of Applied Physics, Vol. 107, Issue 10
  • DOI: 10.1063/1.3369161

On the effect of grain size on shock sensitivity of heterogeneous high explosives
journal, April 1997

  • Khasainov, B. A.; Ermolaev, B. S.; Presles, H. -N.
  • Shock Waves, Vol. 7, Issue 2
  • DOI: 10.1007/s001930050066

Shock Induced Reaction Observed via Ultrafast Infrared Absorption in Poly(vinyl nitrate) Films
journal, October 2004

  • McGrane, S. D.; Moore, D. S.; Funk, D. J.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 43
  • DOI: 10.1021/jp048464x

Ultrafast Shock Compression and Shock-Induced Decomposition of 1,3,5-Triamino-2,4,6-trinitrobenzene Subjected to a Subnanosecond-Duration Shock: An Analysis of Decomposition Products
journal, May 2012

  • Carter, Jeffrey A.; Zaug, Joseph M.; Nelson, A. J.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 20
  • DOI: 10.1021/jp301771y

Determination of second-order elastic constants of cyclotetramethylene tetranitramine (β-HMX) using impulsive stimulated thermal scattering
journal, September 2009

  • Sun, B.; Winey, J. M.; Gupta, Y. M.
  • Journal of Applied Physics, Vol. 106, Issue 5
  • DOI: 10.1063/1.3211927

Crystal level continuum modelling of phase transformations: the α ↔ epsi transformation in iron
journal, June 2005

  • Barton, N. R.; Benson, D. J.; Becker, R.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 13, Issue 5
  • DOI: 10.1088/0965-0393/13/5/006

Grain-Scale Simulation of Shock Initiation in Composite High Explosives
book, January 2017

  • Austin, Ryan A.; Springer, H. Keo; Fried, Laurence E.
  • Challenges and Advances in Computational Chemistry and Physics
  • DOI: 10.1007/978-3-319-59208-4_8

Ultrafast Shock Initiation of Exothermic Chemistry in Hydrogen Peroxide
journal, October 2013

  • Armstrong, Michael R.; Zaug, Joseph M.; Goldman, Nir
  • The Journal of Physical Chemistry A, Vol. 117, Issue 49
  • DOI: 10.1021/jp407595u

Elastic–plastic wave profiles in cyclotetramethylene tetranitramine crystals
journal, July 2004

  • Dick, J. J.; Hooks, D. E.; Menikoff, R.
  • Journal of Applied Physics, Vol. 96, Issue 1
  • DOI: 10.1063/1.1757026

Shock Initiation of Solid Explosives
journal, January 1961

  • Campbell, A. W.; Davis, W. C.; Ramsay, J. B.
  • Physics of Fluids, Vol. 4, Issue 4
  • DOI: 10.1063/1.1706354

Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal
journal, May 2015

  • Austin, Ryan A.; Barton, Nathan R.; Reaugh, John E.
  • Journal of Applied Physics, Vol. 117, Issue 18
  • DOI: 10.1063/1.4918538

Shock Wave Chemistry in a Metal–Organic Framework
journal, March 2017

  • Su, Zhi; Shaw, William L.; Miao, Yu-Run
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.6b12956

A molecular dynamics simulation study of elastic properties of HMX
journal, October 2003

  • Sewell, Thomas D.; Menikoff, Ralph; Bedrov, Dmitry
  • The Journal of Chemical Physics, Vol. 119, Issue 14
  • DOI: 10.1063/1.1599273

Shock response of pentaerythritol tetranitrate single crystals
journal, October 1991

  • Dick, J. J.; Mulford, R. N.; Spencer, W. J.
  • Journal of Applied Physics, Vol. 70, Issue 7
  • DOI: 10.1063/1.349253

Atomic-level view of inelastic deformation in a shock loaded molecular crystal
journal, August 2007


Mesoscale simulation of reactive pressed energetic materials under shock loading
journal, December 2015

  • Rai, Nirmal K.; Udaykumar, H. S.
  • Journal of Applied Physics, Vol. 118, Issue 24
  • DOI: 10.1063/1.4938581

Shock initiation of explosives: High temperature hot spots explained
journal, August 2017

  • Bassett, Will P.; Johnson, Belinda P.; Neelakantan, Nitin K.
  • Applied Physics Letters, Vol. 111, Issue 6
  • DOI: 10.1063/1.4985593

Relationship between the morphology of granular cyclotrimethylene-trinitramine and its shock sensitivity
journal, December 2007

  • Czerski, H.; Proud, W. G.
  • Journal of Applied Physics, Vol. 102, Issue 11
  • DOI: 10.1063/1.2818106

Thermal expansion, transitions, sensitivities and burning rates of HMX
journal, July 1992

  • Herrmann, Michael; Engel, Walter; Eisenreich, Norbert
  • Propellants, Explosives, Pyrotechnics, Vol. 17, Issue 4
  • DOI: 10.1002/prep.19920170409

Time-Resolved Spectroscopic Measurements of Shock-Wave Induced Decomposition in Cyclotrimethylene Trinitramine (RDX) Crystals: Anisotropic Response
journal, November 2010

  • Dang, Nhan C.; Dreger, Zbigniew A.; Gupta, Yogendra M.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 43
  • DOI: 10.1021/jp106892c

Defect evolution and pore collapse in crystalline energetic materials
journal, February 2009

  • Barton, Nathan R.; Winter, Nicholas W.; Reaugh, John E.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 17, Issue 3
  • DOI: 10.1088/0965-0393/17/3/035003

Pressure‐dependent Elastic Coefficients of β‐HMX from Molecular Simulations
journal, February 2018

  • Mathew, Nithin; Sewell, Tommy
  • Propellants, Explosives, Pyrotechnics, Vol. 43, Issue 3
  • DOI: 10.1002/prep.201700286

Quantum Chemistry Based Force Field for Simulations of HMX
journal, May 1999

  • Smith, Grant D.; Bharadwaj, Rishikesh K.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 18
  • DOI: 10.1021/jp984599p

Analysis of shock compression of strong single crystals with logarithmic thermoelastic-plastic theory
journal, June 2014


Ultrafast high strain rate acoustic wave measurements at high static pressure in a diamond anvil cell
journal, March 2008

  • Armstrong, Michael R.; Crowhurst, Jonathan C.; Reed, Evan J.
  • Applied Physics Letters, Vol. 92, Issue 10
  • DOI: 10.1063/1.2898222

Effects of crystal plasticity on materials loaded at high pressures and strain rates
journal, November 2004


Controlling the microstructure of vapor-deposited pentaerythritol tetranitrate films
journal, June 2011

  • Knepper, Robert; Tappan, Alexander S.; Wixom, Ryan R.
  • Journal of Materials Research, Vol. 26, Issue 13
  • DOI: 10.1557/jmr.2011.177

Ultrafast high strain rate acoustic wave measurements at high static pressure in a diamond anvil cell
conference, March 2009

  • Armstrong, Michael R.; Crowhurst, Jonathan C.; Reed, Evan J.
  • SPIE OPTO: Integrated Optoelectronic Devices, SPIE Proceedings
  • DOI: 10.1117/12.809363

Works referencing / citing this record:

A benchtop shock physics laboratory: Ultrafast laser driven shock spectroscopy and interferometry methods
journal, June 2019

  • Powell, M. S.; Bowlan, P. R.; Son, S. F.
  • Review of Scientific Instruments, Vol. 90, Issue 6
  • DOI: 10.1063/1.5092244

Non-Schmid effect of pressure on plastic deformation in molecular crystal HMX
journal, June 2019

  • Pal, Anirban; Picu, Catalin R.
  • Journal of Applied Physics, Vol. 125, Issue 21
  • DOI: 10.1063/1.5092285

The effect of crystal anisotropy and plastic response on the dynamic fracture of energetic materials
journal, October 2019

  • Grilli, Nicolò; Koslowski, Marisol
  • Journal of Applied Physics, Vol. 126, Issue 15
  • DOI: 10.1063/1.5109761

A molecular dynamics simulation study of thermal conductivity anisotropy in β -octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine ( β -HMX)
journal, January 2020

  • Chitsazi, Rezvan; Kroonblawd, Matthew P.; Pereverzev, Andrey
  • Modelling and Simulation in Materials Science and Engineering, Vol. 28, Issue 2
  • DOI: 10.1088/1361-651x/ab62e3

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.