DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tuning martensitic transitions in (MnNiSi)0.65(Fe2Ge)0.35 through heat treatment and hydrostatic pressure

Abstract

A first-order magneto-structural transition from a ferromagnetic orthorhombic TiNiSi-type martensite phase to a paramagnetic hexagonal Ni2In-type austenite phase was observed in (MnNiSi)0.65(Fe2Ge)0.35. In this work, we demonstrate that the first-order magneto-structural transition temperature for a given composition is tunable over a wide temperature range through heat treatment and hydrostatic pressure. The first-order transition temperature was reduced by over 100 K as the annealing temperature went from 600 to 900 °C, and this first-order transition was converted to second order when the sample was annealed at 1000 °C. The maximum magnetic-induced isothermal entropy change with μ0ΔH=7 T reaches -58 J/kg K for the sample annealed at 600 °C, and the relative cooling power reaches 558 J/kg for the sample annealed at 700 °C. Similar to the influence of annealing temperatures, the first-order martensitic transition temperatures were reduced as the application of hydrostatic pressure increased until they were converted to second order. Our results suggest that the (MnNiSi)0.65(Fe2Ge)0.35 system is a promising platform for tuning magneto-structural transitions and the associated magnetocaloric effects. Furthermore, a similar heat treatment methodology or application of hydrostatic pressure can be applied to MnNiSi-based shape memory alloys to tailor their working transition temperatures.

Authors:
 [1];  [1];  [1];  [1];  [2];  [2];  [1]
  1. Louisiana State Univ., Baton Rouge, LA (United States)
  2. Southern Illinois Univ., Carbondale, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Louisiana State Univ., Baton Rouge, LA (United States); Southern Illinois Univ., Carbondale, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1484787
Alternate Identifier(s):
OSTI ID: 1872463
Grant/Contract Number:  
AC02-06CH11357; FG02-13ER46946; FG02-06ER46291; SC0012432; NSF-DMR- 1306392; SC0010521
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 124; Journal Issue: 20; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
ENGLISH
Subject:
36 MATERIALS SCIENCE; Shape memory effect; Smart materials; Magnetism; Entropy; Phase transitions; Materials heat treatment; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; magnetocaloric effect; phase transitions

Citation Formats

Chen, Jing-Han, Us Saleheen, Ahmad, Karna, Sunil K., Young, David P., Dubenko, Igor, Ali, Naushad, and Stadler, Shane. Tuning martensitic transitions in (MnNiSi)0.65(Fe2Ge)0.35 through heat treatment and hydrostatic pressure. United States: N. p., 2018. Web. doi:10.1063/1.5051551.
Chen, Jing-Han, Us Saleheen, Ahmad, Karna, Sunil K., Young, David P., Dubenko, Igor, Ali, Naushad, & Stadler, Shane. Tuning martensitic transitions in (MnNiSi)0.65(Fe2Ge)0.35 through heat treatment and hydrostatic pressure. United States. https://doi.org/10.1063/1.5051551
Chen, Jing-Han, Us Saleheen, Ahmad, Karna, Sunil K., Young, David P., Dubenko, Igor, Ali, Naushad, and Stadler, Shane. Wed . "Tuning martensitic transitions in (MnNiSi)0.65(Fe2Ge)0.35 through heat treatment and hydrostatic pressure". United States. https://doi.org/10.1063/1.5051551. https://www.osti.gov/servlets/purl/1484787.
@article{osti_1484787,
title = {Tuning martensitic transitions in (MnNiSi)0.65(Fe2Ge)0.35 through heat treatment and hydrostatic pressure},
author = {Chen, Jing-Han and Us Saleheen, Ahmad and Karna, Sunil K. and Young, David P. and Dubenko, Igor and Ali, Naushad and Stadler, Shane},
abstractNote = {A first-order magneto-structural transition from a ferromagnetic orthorhombic TiNiSi-type martensite phase to a paramagnetic hexagonal Ni2In-type austenite phase was observed in (MnNiSi)0.65(Fe2Ge)0.35. In this work, we demonstrate that the first-order magneto-structural transition temperature for a given composition is tunable over a wide temperature range through heat treatment and hydrostatic pressure. The first-order transition temperature was reduced by over 100 K as the annealing temperature went from 600 to 900 °C, and this first-order transition was converted to second order when the sample was annealed at 1000 °C. The maximum magnetic-induced isothermal entropy change with μ0ΔH=7 T reaches -58 J/kg K for the sample annealed at 600 °C, and the relative cooling power reaches 558 J/kg for the sample annealed at 700 °C. Similar to the influence of annealing temperatures, the first-order martensitic transition temperatures were reduced as the application of hydrostatic pressure increased until they were converted to second order. Our results suggest that the (MnNiSi)0.65(Fe2Ge)0.35 system is a promising platform for tuning magneto-structural transitions and the associated magnetocaloric effects. Furthermore, a similar heat treatment methodology or application of hydrostatic pressure can be applied to MnNiSi-based shape memory alloys to tailor their working transition temperatures.},
doi = {10.1063/1.5051551},
journal = {Journal of Applied Physics},
number = 20,
volume = 124,
place = {United States},
year = {Wed Nov 28 00:00:00 EST 2018},
month = {Wed Nov 28 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Crystal and magnetic structure of NiMnGe
journal, December 1976

  • Bazela, W.; Szytuła, A.; Todorović, J.
  • Physica Status Solidi (a), Vol. 38, Issue 2
  • DOI: 10.1002/pssa.2210380235

Magnetostructural Transformation and Magnetoresponsive Properties of ${\rm MnNiGe}_{1-x}{\rm Sn}_{x}$ Alloys
journal, October 2011


On the determination of the magnetic entropy change in materials with first-order transitions
journal, November 2009

  • Caron, L.; Ou, Z. Q.; Nguyen, T. T.
  • Journal of Magnetism and Magnetic Materials, Vol. 321, Issue 21
  • DOI: 10.1016/j.jmmm.2009.06.086

From single- to double-first-order magnetic phase transition in magnetocaloric Mn1−xCrxCoGe compounds
journal, April 2010

  • Trung, N. T.; Biharie, V.; Zhang, L.
  • Applied Physics Letters, Vol. 96, Issue 16
  • DOI: 10.1063/1.3399774

A multicaloric cooling cycle that exploits thermal hysteresis
journal, September 2018

  • Gottschall, Tino; Gràcia-Condal, Adrià; Fries, Maximilian
  • Nature Materials, Vol. 17, Issue 10
  • DOI: 10.1038/s41563-018-0166-6

Giant magnetocaloric effects by tailoring the phase transitions
journal, April 2010

  • Trung, N. T.; Zhang, L.; Caron, L.
  • Applied Physics Letters, Vol. 96, Issue 17
  • DOI: 10.1063/1.3399773

Magnetocaloric materials: The search for new systems
journal, September 2012


EXPGUI , a graphical user interface for GSAS
journal, April 2001


Magnetostructural transition and magnetocaloric effect in MnNiSi-Fe 2 Ge system
journal, November 2015

  • Zhang, C. L.; Shi, H. F.; Ye, E. J.
  • Applied Physics Letters, Vol. 107, Issue 21
  • DOI: 10.1063/1.4936610

Vacancy induced structural and magnetic transition in MnCo1−xGe
journal, December 2006

  • Wang, Jian-Tao; Wang, Ding-Sheng; Chen, Changfeng
  • Applied Physics Letters, Vol. 89, Issue 26
  • DOI: 10.1063/1.2424273

Giant magnetocaloric effect in MnCoGe with minimal Ga substitution
journal, August 2015


A review on Mn based materials for magnetic refrigeration: Structure and properties
journal, August 2008


Large low-field magnetocaloric effect in MnCo0.95Ge1.14 alloy
journal, September 2007


Effects of hydrostatic pressure on magnetostructural transitions and magnetocaloric properties in (MnNiSi)1−x(FeCoGe)x
journal, March 2015

  • Samanta, Tapas; Lepkowski, Daniel L.; Saleheen, Ahmad Us
  • Journal of Applied Physics, Vol. 117, Issue 12
  • DOI: 10.1063/1.4916339

Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window
journal, March 2013

  • Liu, E. K.; Zhang, H. G.; Xu, G. Z.
  • Applied Physics Letters, Vol. 102, Issue 12
  • DOI: 10.1063/1.4798318

Magnetocaloric effect from indirect measurements: Magnetization and heat capacity
journal, July 1999

  • Pecharsky, V. K.; Gschneidner, K. A.
  • Journal of Applied Physics, Vol. 86, Issue 1
  • DOI: 10.1063/1.370767

Magneto-volume effect of MnCo1−xGe(0⩽x⩽0.2)
journal, February 1995


Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn 1-x CoGe alloys
journal, July 2010


Magnetostructural phase transition and magnetocaloric effect in off-stoichiometric Mn1.9−xNixGe alloys
journal, September 2008

  • Zhang, C. L.; Wang, D. H.; Cao, Q. Q.
  • Applied Physics Letters, Vol. 93, Issue 12
  • DOI: 10.1063/1.2990649

Thirty years of near room temperature magnetic cooling: Where we are today and future prospects
journal, September 2008


Hydrostatic pressure-induced modifications of structural transitions lead to large enhancements of magnetocaloric effects in MnNiSi-based systems
journal, January 2015


Giant Magnetocaloric Effect in Gd5(Si2Ge2)
journal, June 1997


The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models
journal, August 2012


Developments in magnetocaloric refrigeration
journal, November 2005


Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets
journal, January 2012

  • Liu, Enke; Wang, Wenhong; Feng, Lin
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1868

The tunable magnetostructural transition in MnNiSi-FeNiGe system
journal, September 2013

  • Zhang, C. L.; Wang, D. H.; Han, Z. D.
  • Applied Physics Letters, Vol. 103, Issue 13
  • DOI: 10.1063/1.4823510

Material-based figure of merit for caloric materials
journal, January 2018

  • Griffith, L. D.; Mudryk, Y.; Slaughter, J.
  • Journal of Applied Physics, Vol. 123, Issue 3
  • DOI: 10.1063/1.5004173

Barocaloric and magnetocaloric effects in (MnNiSi) 1− x (FeCoGe) x
journal, January 2018

  • Samanta, Tapas; Lloveras, Pol; Us Saleheen, Ahmad
  • Applied Physics Letters, Vol. 112, Issue 2
  • DOI: 10.1063/1.5011743

A profile refinement method for nuclear and magnetic structures
journal, June 1969


On the crystal structure and magnetic properties of MnNiGe
journal, July 1985


Tuning structural instability toward enhanced magnetocaloric effect around room temperature in MnCo1−xZnxGe
journal, December 2014

  • Choudhury, D.; Suzuki, T.; Tokura, Y.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep07544

On entropy determination from magnetic and calorimetric experiments in conventional giant magnetocaloric materials
journal, April 2018

  • Chen, Jing-Han; Us Saleheen, Ahmad; Adams, Philip W.
  • Journal of Applied Physics, Vol. 123, Issue 14
  • DOI: 10.1063/1.5016858

Crystal and magnetic structure of the NiMnGe1−nSin System
journal, March 1981

  • Bażela, W.; Szytula, A.; Todorović, J.
  • Physica Status Solidi (a), Vol. 64, Issue 1
  • DOI: 10.1002/pssa.2210640140

Magnetocaloric Materials
journal, August 2000


Near room temperature giant magnetocaloric effect in (MnNiSi)1-x(Fe2Ge)x alloys
journal, April 2018


On the magnetostructural transition in MnCoGeB alloy ribbons
journal, September 2015

  • Quintana-Nedelcos, A.; Sánchez Llamazares, J. L.; Flores-Zuñiga, H.
  • Journal of Alloys and Compounds, Vol. 644
  • DOI: 10.1016/j.jallcom.2015.05.008

Giant magnetocaloric effects near room temperature in Mn 1 − x Cu x CoGe
journal, December 2012

  • Samanta, Tapas; Dubenko, Igor; Quetz, Abdiel
  • Applied Physics Letters, Vol. 101, Issue 24
  • DOI: 10.1063/1.4770379

Magnetostructural transition and magnetocaloric effect in MnCoGe–NiCoGe system
journal, August 2015


Magnetostructural transition and adiabatic temperature change in Mn–Co–Ge magnetic refrigerants
journal, May 2012


Recent Progress in Exploring Magnetocaloric Materials
journal, December 2009


Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides
journal, May 1975


Magnetostructural phase transitions and magnetocaloric effects in MnNiGe 1−x Al x
journal, January 2012

  • Samanta, Tapas; Dubenko, Igor; Quetz, Abdiel
  • Applied Physics Letters, Vol. 100, Issue 5
  • DOI: 10.1063/1.3681798

Recent developments in magnetocaloric materials
journal, May 2005

  • Gschneidner, K. A.; Pecharsky, V. K.; Tsokol, A. O.
  • Reports on Progress in Physics, Vol. 68, Issue 6, p. 1479-1539
  • DOI: 10.1088/0034-4885/68/6/R04

Phase diagram and magnetocaloric effect of CoMnGe 1 - x Sn x alloys
journal, November 2009

  • Hamer, J. B. A.; Daou, R.; Özcan, S.
  • Journal of Magnetism and Magnetic Materials, Vol. 321, Issue 21
  • DOI: 10.1016/j.jmmm.2008.03.003

Large roomtemperature magnetocaloric effect with negligible magnetic hysteresis losses in Mn1−xVxCoGe alloys
journal, January 2012

  • Ma, S. C.; Zheng, Y. X.; Xuan, H. C.
  • Journal of Magnetism and Magnetic Materials, Vol. 324, Issue 2
  • DOI: 10.1016/j.jmmm.2011.07.047

Electronic structure calculations of solids using the WIEN2k package for material sciences
journal, August 2002