DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers

Abstract

Exfoliation of large-area monolayers is important for fundamental research and technological implementation of transitionmetal dichalcogenides. Various techniques have been explored to increase the exfoliation yield, but little is known about the underlying mechanism at the atomic level. Here, we demonstrate gold-assisted mechanical exfoliation of monolayer molybdenum disulfide, up to a centimeter scale. Detailed spectroscopic, microscopic, and firstprinciples density functional theory analyses reveal that strong van der Waals (vdW) interaction between Au and the topmost MoS2 layer facilitates the exfoliation of monolayers. However, the large-area exfoliation promoted by such strong vdW interaction is only achievable on freshly prepared clean and smooth Au surfaces, while rough surfaces and surfaces exposed to air for more than 15 min result in negligible exfoliation yields. This technique is successfully extended to MoSe2, WS2, WSe2, MoTe2, WTe2, and GaSe. In addition, electrochemical characterization reveals intriguing interactions between monolayer MoS2 and Au. A subnanometer-thick MoS2 monolayer strongly passivates the chemical properties of the underlying Au, and the Au significantly modulates the electronic band structure of the MoS2, turning it from semiconducting to metallic. This could find applications in many areas, including electrochemistry, photovoltaics, and photocatalysis

Authors:
 [1];  [2];  [2];  [2];  [2];  [3];  [4]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [3];  [7];  [8]; ORCiD logo [3];  [2];  [2]; ORCiD logo [2]
  1. School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, United Kingdom, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
  2. School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, United Kingdom
  3. Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
  4. Department of Material Science and Engineering, Cornell University, Ithaca, New York 14853, United States
  5. School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
  6. National Physical Laboratory, Teddington TW11 0LW, United Kingdom
  7. School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States, Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
  8. School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
Publication Date:
Research Org.:
Queen’s Univ. Belfast, Belfast, Ireland (United Kingdom)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1478541
Alternate Identifier(s):
OSTI ID: 1508741
Grant/Contract Number:  
FG02-97ER25308
Resource Type:
Published Article
Journal Name:
ACS Nano
Additional Journal Information:
Journal Name: ACS Nano Journal Volume: 12 Journal Issue: 10; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; transition-metal dichalcogenide; MoS2; gold; monolayer; exfoliation; electrochemical; mechanism

Citation Formats

Velický, Matěj, Donnelly, Gavin E., Hendren, William R., McFarland, Stephen, Scullion, Declan, DeBenedetti, William J. I., Correa, Gabriela Calinao, Han, Yimo, Wain, Andrew J., Hines, Melissa A., Muller, David A., Novoselov, Kostya S., Abruña, Héctor D., Bowman, Robert M., Santos, Elton J. G., and Huang, Fumin. Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. United States: N. p., 2018. Web. doi:10.1021/acsnano.8b06101.
Velický, Matěj, Donnelly, Gavin E., Hendren, William R., McFarland, Stephen, Scullion, Declan, DeBenedetti, William J. I., Correa, Gabriela Calinao, Han, Yimo, Wain, Andrew J., Hines, Melissa A., Muller, David A., Novoselov, Kostya S., Abruña, Héctor D., Bowman, Robert M., Santos, Elton J. G., & Huang, Fumin. Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. United States. https://doi.org/10.1021/acsnano.8b06101
Velický, Matěj, Donnelly, Gavin E., Hendren, William R., McFarland, Stephen, Scullion, Declan, DeBenedetti, William J. I., Correa, Gabriela Calinao, Han, Yimo, Wain, Andrew J., Hines, Melissa A., Muller, David A., Novoselov, Kostya S., Abruña, Héctor D., Bowman, Robert M., Santos, Elton J. G., and Huang, Fumin. Fri . "Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers". United States. https://doi.org/10.1021/acsnano.8b06101.
@article{osti_1478541,
title = {Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers},
author = {Velický, Matěj and Donnelly, Gavin E. and Hendren, William R. and McFarland, Stephen and Scullion, Declan and DeBenedetti, William J. I. and Correa, Gabriela Calinao and Han, Yimo and Wain, Andrew J. and Hines, Melissa A. and Muller, David A. and Novoselov, Kostya S. and Abruña, Héctor D. and Bowman, Robert M. and Santos, Elton J. G. and Huang, Fumin},
abstractNote = {Exfoliation of large-area monolayers is important for fundamental research and technological implementation of transitionmetal dichalcogenides. Various techniques have been explored to increase the exfoliation yield, but little is known about the underlying mechanism at the atomic level. Here, we demonstrate gold-assisted mechanical exfoliation of monolayer molybdenum disulfide, up to a centimeter scale. Detailed spectroscopic, microscopic, and firstprinciples density functional theory analyses reveal that strong van der Waals (vdW) interaction between Au and the topmost MoS2 layer facilitates the exfoliation of monolayers. However, the large-area exfoliation promoted by such strong vdW interaction is only achievable on freshly prepared clean and smooth Au surfaces, while rough surfaces and surfaces exposed to air for more than 15 min result in negligible exfoliation yields. This technique is successfully extended to MoSe2, WS2, WSe2, MoTe2, WTe2, and GaSe. In addition, electrochemical characterization reveals intriguing interactions between monolayer MoS2 and Au. A subnanometer-thick MoS2 monolayer strongly passivates the chemical properties of the underlying Au, and the Au significantly modulates the electronic band structure of the MoS2, turning it from semiconducting to metallic. This could find applications in many areas, including electrochemistry, photovoltaics, and photocatalysis},
doi = {10.1021/acsnano.8b06101},
journal = {ACS Nano},
number = 10,
volume = 12,
place = {United States},
year = {Fri Sep 28 00:00:00 EDT 2018},
month = {Fri Sep 28 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acsnano.8b06101

Citation Metrics:
Cited by: 166 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Exfoliation and characterization of MoS2 on Au substrate. (a) Optical macrograph of a large-area monolayer MoS2 on a 7.5 nm Au/ 1 nm Ti/93 nm SiO2/Si wafer. (b) Optical micrograph of a large-area monolayer MoS2. (c) High-resolution optical micrographs of the mono- and multilayer MoS2. (d) Raman spectramore » (532 nm excitation) of mono- and multilayer MoS2 in (c), showing the main in-plane (E2g 1 ) and out-of-plane (A1g) vibrational modes (spectra are offset for clarity). (e) AFM topography image taken from the area highlighted in (c) by the black square, showing a smooth MoS2 surface and tape residue on the Au surface. Inset: the corresponding height profile of monolayer−bilayer boundary, taken from the area highlighted by the white rectangle.« less

Save / Share:

Works referenced in this record:

Light-emitting diodes by band-structure engineering in van der Waals heterostructures
journal, February 2015

  • Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.
  • Nature Materials, Vol. 14, Issue 3
  • DOI: 10.1038/nmat4205

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

From two-dimensional materials to their heterostructures: An electrochemist's perspective
journal, September 2017


Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers
journal, March 2016

  • Desai, Sujay B.; Madhvapathy, Surabhi R.; Amani, Matin
  • Advanced Materials, Vol. 28, Issue 21
  • DOI: 10.1002/adma.201506171

Surface energy and work function of elemental metals
journal, September 1992


Two-dimensional crystals-based heterostructures: materials with tailored properties
journal, January 2012


Projector augmented-wave method
journal, December 1994


A Review of Graphene-Based Electrochemical Microsupercapacitors
journal, November 2013

  • Xiong, Guoping; Meng, Chuizhou; Reifenberger, Ronald G.
  • Electroanalysis, Vol. 26, Issue 1
  • DOI: 10.1002/elan.201300238

Exfoliation of natural van der Waals heterostructures to a single unit cell thickness
journal, February 2017

  • Velický, Matěj; Toth, Peter S.; Rakowski, Alexander M.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14410

Anomalous Lattice Vibrations of Single- and Few-Layer MoS 2
journal, March 2010

  • Lee, Changgu; Yan, Hugen; Brus, Louis E.
  • ACS Nano, Vol. 4, Issue 5
  • DOI: 10.1021/nn1003937

Exfoliation of large-area transition metal chalcogenide single layers
journal, October 2015

  • Magda, Gábor Zsolt; Pető, János; Dobrik, Gergely
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep14714

Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials
journal, July 2013

  • Bernardi, Marco; Palummo, Maurizia; Grossman, Jeffrey C.
  • Nano Letters, Vol. 13, Issue 8, p. 3664-3670
  • DOI: 10.1021/nl401544y

Photoluminescence quenching in gold - MoS2 hybrid nanoflakes
journal, July 2014

  • Bhanu, Udai; Islam, Muhammad R.; Tetard, Laurene
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05575

Au–S Bonding Revealed from the Characterization of Diatomic Gold Sulfide, AuS
journal, November 2015

  • Kokkin, Damian L.; Zhang, Ruohan; Steimle, Timothy C.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 48
  • DOI: 10.1021/acs.jpca.5b08781

Ab initio molecular dynamics for open-shell transition metals
journal, November 1993


First-principles study of van der Waals interactions and lattice mismatch at MoS 2 / metal interfaces
journal, February 2016


The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2
journal, April 2014


Single Layer Molybdenum Disulfide under Direct Out-of-Plane Compression: Low-Stress Band-Gap Engineering
journal, April 2015


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials
journal, February 2011


Precision Determination of Lattice Constants
journal, October 1935

  • Jette, Eric R.; Foote, Frank
  • The Journal of Chemical Physics, Vol. 3, Issue 10
  • DOI: 10.1063/1.1749562

The hydrophilic nature of a clean gold surface
journal, May 1980


In Situ Detection of Active Edge Sites in Single-Layer MoS 2 Catalysts
journal, July 2015

  • Bruix, Albert; Füchtbauer, Henrik Gøbel; Tuxen, Anders K.
  • ACS Nano, Vol. 9, Issue 9
  • DOI: 10.1021/acsnano.5b03199

Electrical and structural properties of thin gold films obtained by vacuum evaporation and sputtering
journal, November 1974


Photoelectrochemistry of Pristine Mono- and Few-Layer MoS 2
journal, February 2016


Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films
journal, October 2017

  • Todeschini, Matteo; Bastos da Silva Fanta, Alice; Jensen, Flemming
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 42
  • DOI: 10.1021/acsami.7b10136

Two-dimensional atomic crystals
journal, July 2005

  • Novoselov, K. S.; Jiang, D.; Schedin, F.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 30, p. 10451-10453
  • DOI: 10.1073/pnas.0502848102

Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations
journal, March 2016

  • Zhong, Hongxia; Quhe, Ruge; Wang, Yangyang
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep21786

Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data
journal, February 2009


Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2
journal, April 2014

  • Wang, Xingli; Gong, Yongji; Shi, Gang
  • ACS Nano, Vol. 8, Issue 5, p. 5125-5131
  • DOI: 10.1021/nn501175k

Monolayer MoS 2 Growth on Au Foils and On-Site Domain Boundary Imaging
journal, December 2014

  • Shi, Jianping; Yang, Yang; Zhang, Yu
  • Advanced Functional Materials, Vol. 25, Issue 6
  • DOI: 10.1002/adfm.201403659

Atomically Thin MoS2 A New Direct-Gap Semiconductor
journal, September 2010


Structural, optical and electrostatic properties of single and few-layers MoS 2 : effect of substrate
journal, February 2015


Plasmonic Pumping of Excitonic Photoluminescence in Hybrid MoS 2 –Au Nanostructures
journal, November 2014

  • Najmaei, Sina; Mlayah, Adnen; Arbouet, Arnaud
  • ACS Nano, Vol. 8, Issue 12
  • DOI: 10.1021/nn5056942

Measurement and correlation of ion activity in aqueous single electrolyte solutions
journal, January 1996


Kinetic Modulation of Outer-Sphere Electron Transfer Reactions on Graphene Electrode with a Sub-surface Metal Substrate
journal, September 2016


The Evolution of Growth, Crystal Orientation, and Grain Boundaries Disorientation Distribution in Gold Thin Films
journal, April 2018

  • Parajuli, Prakash; Mendoza-Cruz, Rubén; Santiago, Ulises
  • Crystal Research and Technology, Vol. 53, Issue 8
  • DOI: 10.1002/crat.201800038

Schottky-barrier formation on a covalent semiconductor without Fermi-level pinning: The metal- MoS 2 (0001) interface
journal, July 1987

  • Lince, Jeffrey R.; Carré, David J.; Fleischauer, Paul D.
  • Physical Review B, Vol. 36, Issue 3
  • DOI: 10.1103/PhysRevB.36.1647

Electron transfer kinetics on natural crystals of MoS 2 and graphite
journal, January 2015

  • Velický, Matěj; Bissett, Mark A.; Toth, Peter S.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 27
  • DOI: 10.1039/C5CP02490K

van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations
journal, June 2012


From Bulk to Monolayer MoS2: Evolution of Raman Scattering
journal, January 2012

  • Li, Hong; Zhang, Qing; Yap, Chin Chong Ray
  • Advanced Functional Materials, Vol. 22, Issue 7
  • DOI: 10.1002/adfm.201102111

Introduction to Focused Ion Beams
book, January 2005

  • Giannuzzi, Lucille A.; Stevie, Fred A.
  • Springer New York, NY
  • DOI: 10.1007/b101190

MoS 2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap
journal, June 2012

  • Lee, Hee Sung; Min, Sung-Wook; Chang, Youn-Gyung
  • Nano Letters, Vol. 12, Issue 7
  • DOI: 10.1021/nl301485q

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.