DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlling Dissolution and Transformation of Zeolitic Imidazolate Frameworks by using Electron‐Beam‐Induced Amorphization

Abstract

Abstract Amorphous zeolitic imidazolate frameworks (ZIFs) offer promising applications as novel functional materials. Herein, amorphization of ZIF‐L through scanning‐electron‐beam exposure is demonstrated, based on amorphization of individual ZIF‐L crystals. The amorphized ZIF product has drastically increased stability against dissolution in water. An electron dose that allows for complete preservation of amorphous particles after immersion in water is established, resulting in new shapes of amorphous ZIF‐L with spatial control at the sub‐micrometer length scale. Changed water stability as a consequence of scanning‐electron‐beam exposure is demonstrated for three additional metal–organic frameworks (ZIF‐8, Zn(BeIm)OAc, MIL‐101), highlighting the potential use of an electron beam for top‐down MOF patterning. Lastly, recrystallization of ZIF‐L in the presence of linker is studied and shows distinct differences for crystalline and amorphized material.

Authors:
 [1];  [1];  [1];  [1];  [2];  [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Department of Chemical Engineering and Materials Science University of Minnesota Washington Ave SE Minneapolis MN 55455 USA
  2. Thermo Fisher Scientific 5225 Verona Road Madison WI 53711 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1472171
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition) Journal Volume: 57 Journal Issue: 41; Journal ID: ISSN 1433-7851
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Conrad, Sabrina, Kumar, Prashant, Xue, Feng, Ren, Limin, Henning, Sheryl, Xiao, Chunhong, Mkhoyan, K. Andre, and Tsapatsis, Michael. Controlling Dissolution and Transformation of Zeolitic Imidazolate Frameworks by using Electron‐Beam‐Induced Amorphization. Germany: N. p., 2018. Web. doi:10.1002/anie.201809921.
Conrad, Sabrina, Kumar, Prashant, Xue, Feng, Ren, Limin, Henning, Sheryl, Xiao, Chunhong, Mkhoyan, K. Andre, & Tsapatsis, Michael. Controlling Dissolution and Transformation of Zeolitic Imidazolate Frameworks by using Electron‐Beam‐Induced Amorphization. Germany. https://doi.org/10.1002/anie.201809921
Conrad, Sabrina, Kumar, Prashant, Xue, Feng, Ren, Limin, Henning, Sheryl, Xiao, Chunhong, Mkhoyan, K. Andre, and Tsapatsis, Michael. Wed . "Controlling Dissolution and Transformation of Zeolitic Imidazolate Frameworks by using Electron‐Beam‐Induced Amorphization". Germany. https://doi.org/10.1002/anie.201809921.
@article{osti_1472171,
title = {Controlling Dissolution and Transformation of Zeolitic Imidazolate Frameworks by using Electron‐Beam‐Induced Amorphization},
author = {Conrad, Sabrina and Kumar, Prashant and Xue, Feng and Ren, Limin and Henning, Sheryl and Xiao, Chunhong and Mkhoyan, K. Andre and Tsapatsis, Michael},
abstractNote = {Abstract Amorphous zeolitic imidazolate frameworks (ZIFs) offer promising applications as novel functional materials. Herein, amorphization of ZIF‐L through scanning‐electron‐beam exposure is demonstrated, based on amorphization of individual ZIF‐L crystals. The amorphized ZIF product has drastically increased stability against dissolution in water. An electron dose that allows for complete preservation of amorphous particles after immersion in water is established, resulting in new shapes of amorphous ZIF‐L with spatial control at the sub‐micrometer length scale. Changed water stability as a consequence of scanning‐electron‐beam exposure is demonstrated for three additional metal–organic frameworks (ZIF‐8, Zn(BeIm)OAc, MIL‐101), highlighting the potential use of an electron beam for top‐down MOF patterning. Lastly, recrystallization of ZIF‐L in the presence of linker is studied and shows distinct differences for crystalline and amorphized material.},
doi = {10.1002/anie.201809921},
journal = {Angewandte Chemie (International Edition)},
number = 41,
volume = 57,
place = {Germany},
year = {Wed Sep 19 00:00:00 EDT 2018},
month = {Wed Sep 19 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/anie.201809921

Citation Metrics:
Cited by: 49 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Heteroepitaxially Grown Zeolitic Imidazolate Framework Membranes with Unprecedented Propylene/Propane Separation Performances
journal, September 2015

  • Kwon, Hyuk Taek; Jeong, Hae-Kwon; Lee, Albert S.
  • Journal of the American Chemical Society, Vol. 137, Issue 38
  • DOI: 10.1021/jacs.5b06730

Transmission Electron Microscopy
book, January 2009


Facile Mechanosynthesis of Amorphous Zeolitic Imidazolate Frameworks
journal, September 2011

  • Bennett, Thomas D.; Cao, Shuai; Tan, Jin Chong
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja206082s

Kovalente postsynthetische Funktionalisierung einer ZIF-90-MOF-Membran zur Erhöhung ihrer Wasserstoffselektivität
journal, March 2011


Amorphization of Metal–Organic Framework MOF-5 by Electrical Discharge
journal, February 2011


Chemical vapour deposition of zeolitic imidazolate framework thin films
journal, December 2015

  • Stassen, Ivo; Styles, Mark; Grenci, Gianluca
  • Nature Materials, Vol. 15, Issue 3
  • DOI: 10.1038/nmat4509

Top-down patterning of Zeolitic Imidazolate Framework composite thin films by deep X-ray lithography
journal, January 2012

  • Dimitrakakis, Constantinos; Marmiroli, Benedetta; Amenitsch, Heinz
  • Chemical Communications, Vol. 48, Issue 60
  • DOI: 10.1039/c2cc33292b

A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption
journal, January 2013

  • Chen, Rizhi; Yao, Jianfeng; Gu, Qinfen
  • Chemical Communications, Vol. 49, Issue 82
  • DOI: 10.1039/c3cc44342f

Electron diffraction and HRTEM imaging of beam-sensitive materials
journal, July 2011


Stripping off hydrogens in imidazole triggered by the attachment of a single electron
journal, January 2017

  • Ribar, A.; Fink, K.; Li, Z.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 9
  • DOI: 10.1039/C6CP08773F

Radiation damage in the TEM and SEM
journal, August 2004


Control of radiation damage in the TEM
journal, April 2013


Covalent Post-Functionalization of Zeolitic Imidazolate Framework ZIF-90 Membrane for Enhanced Hydrogen Selectivity
journal, March 2011

  • Huang, Aisheng; Caro, Jürgen
  • Angewandte Chemie International Edition, Vol. 50, Issue 21
  • DOI: 10.1002/anie.201007861

Thermal Amorphization of Zeolitic Imidazolate Frameworks
journal, February 2011

  • Bennett, Thomas D.; Keen, David A.; Tan, Jin-Chong
  • Angewandte Chemie International Edition, Vol. 50, Issue 13
  • DOI: 10.1002/anie.201007303

Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
journal, June 2006

  • Park, K. S.; Ni, Z.; Cote, A. P.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 27, p. 10186-10191
  • DOI: 10.1073/pnas.0602439103

Amorphous metal–organic frameworks for drug delivery
journal, January 2015

  • Orellana-Tavra, Claudia; Baxter, Emma F.; Tian, Tian
  • Chemical Communications, Vol. 51, Issue 73
  • DOI: 10.1039/C5CC05237H

Ball-Milling-Induced Amorphization of Zeolitic Imidazolate Frameworks (ZIFs) for the Irreversible Trapping of Iodine
journal, April 2013

  • Bennett, Thomas D.; Saines, Paul J.; Keen, David A.
  • Chemistry - A European Journal, Vol. 19, Issue 22
  • DOI: 10.1002/chem.201300216

Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4)
journal, January 2011

  • Bennett, Thomas D.; Simoncic, Petra; Moggach, Stephen A.
  • Chemical Communications, Vol. 47, Issue 28
  • DOI: 10.1039/c1cc11985k

Crystals as Molecules Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks
journal, September 2008

  • Morris, William; Doonan, Christian J.; Furukawa, Hiroyasu
  • Journal of the American Chemical Society, Vol. 130, Issue 38, p. 12626-12627
  • DOI: 10.1021/ja805222x

Structure and Properties of an Amorphous Metal-Organic Framework
journal, March 2010


Selective gas adsorption and separation in metal–organic frameworks
journal, January 2009

  • Li, Jian-Rong; Kuppler, Ryan J.; Zhou, Hong-Cai
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1477-1504
  • DOI: 10.1039/b802426j

MOF positioning technology and device fabrication
journal, January 2014

  • Falcaro, Paolo; Ricco, Raffaele; Doherty, Cara M.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00089G

Tetrahedral vs Octahedral Zinc Complexes with Ligands of Biological Interest:  A DFT/CDM Study
journal, November 2000

  • Dudev, Todor; Lim, Carmay
  • Journal of the American Chemical Society, Vol. 122, Issue 45
  • DOI: 10.1021/ja0010296

Crystal Transformation in Zeolitic-Imidazolate Framework
journal, October 2014

  • Low, Ze-Xian; Yao, Jianfeng; Liu, Qi
  • Crystal Growth & Design, Vol. 14, Issue 12
  • DOI: 10.1021/cg501502r

Transition from ZIF-L-Co to ZIF-67: a new insight into the structural evolution of zeolitic imidazolate frameworks (ZIFs) in aqueous systems
journal, January 2015

  • Zhang, Jingcheng; Zhang, Tianci; Yu, Dongbo
  • CrystEngComm, Vol. 17, Issue 43
  • DOI: 10.1039/C5CE01531F

Zeolitic imidazolate framework materials: recent progress in synthesis and applications
journal, January 2014

  • Chen, Binling; Yang, Zhuxian; Zhu, Yanqiu
  • Journal of Materials Chemistry A, Vol. 2, Issue 40, p. 16811-16831
  • DOI: 10.1039/C4TA02984D

Transmission electron microscopy on metal–organic frameworks – a review
journal, January 2017

  • Wiktor, Christian; Meledina, Maria; Turner, Stuart
  • Journal of Materials Chemistry A, Vol. 5, Issue 29
  • DOI: 10.1039/C7TA00194K

Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks
journal, January 2010

  • Phan, Anh; Doonan, Christian J.; Uribe-Romo, Fernando J.
  • Accounts of Chemical Research, Vol. 43, Issue 1, p. 58-67
  • DOI: 10.1021/ar900116g

Amorphous Metal–Organic Frameworks
journal, April 2014

  • Bennett, Thomas D.; Cheetham, Anthony K.
  • Accounts of Chemical Research, Vol. 47, Issue 5
  • DOI: 10.1021/ar5000314

The Silica-Like Extended Polymorphism of Cobalt(II) Imidazolate Three-Dimensional Frameworks: X-ray Single-Crystal Structures and Magnetic Properties
journal, November 2003

  • Tian, Yun-Qi; Cai, Chen-Xin; Ren, Xiao-Ming
  • Chemistry - A European Journal, Vol. 9, Issue 22
  • DOI: 10.1002/chem.200304957

Thermal Amorphization of Zeolitic Imidazolate Frameworks
journal, February 2011

  • Bennett, Thomas D.; Keen, David A.; Tan, Jin-Chong
  • Angewandte Chemie, Vol. 123, Issue 13
  • DOI: 10.1002/ange.201007303

An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors
journal, January 2017

  • Stassen, Ivo; Burtch, Nicholas; Talin, Alec
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C7CS00122C

Pressure-Induced Amorphization and Porosity Modification in a Metal−Organic Framework
journal, December 2009

  • Chapman, Karena W.; Halder, Gregory J.; Chupas, Peter J.
  • Journal of the American Chemical Society, Vol. 131, Issue 48
  • DOI: 10.1021/ja908415z