skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on May 29, 2019

Title: Acid Gas Stability of Zeolitic Imidazolate Frameworks: Generalized Kinetic and Thermodynamic Characteristics

Here, acid gases such as SO 2 and CO 2 are present in many environments in which the use of nanoporous metal-organic frameworks (MOFs) is envisaged. Among metal-organic frameworks, zeolitic imidazolate frameworks (ZIFs) have been extensively explored as membranes or adsorbents. However, there is little systematic knowledge of the effects of acid gas exposure on the structure of ZIFs, in particular the mechanistic aspects of ZIF degradation by acid gases as well as the effects of ZIF crystal topology and linker composition on their stability. Here we present a generalized and quantitative investigation of the kinetic and thermodynamic acid gas stability of a diverse range of ZIF materials. The stability of 16 ZIFs (of SOD, RHO, ANA, and GME topologies) under different environments – humid air, liquid water, and acid gases CO 2 and SO 2 (dry, humid, and aqueous) – are investigated by a suite of experimental and computational methods. The kinetics of ZIF degradation under exposure to humid SO 2 is studied in detail, and effective rate constants for acid gas degradation of ZIFs are reported for the first time. Remarkably, the kinetics of degradation of the diverse ZIFs correlate strongly with the linker pKa and ZIF watermore » adsorption in a manner contrary to that expected from previous predictions in the literature. Furthermore, we find that the material ZIF-71 (RHO topology) shows much higher stability relative to the other ZIFs in humid SO 2 and CO 2 environments.« less
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Georgia Inst. of Technology, Atlanta, GA (United States)
Publication Date:
Grant/Contract Number:
SC0012577
Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Name: Chemistry of Materials; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Research Org:
Georgia Tech Research Corp., Atlanta, GA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; MOF; acid gas
OSTI Identifier:
1439424