skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap [Quaternary Two-Dimensional (2D) Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap]

Abstract

Alloying/doping in 2D material is important due to wide range bandgap tunability. Increasing the number of components would increase the degree of freedom which can provide more flexibility in tuning the bandgap and also reduces the growth temperature. Here, synthesis of quaternary alloys Mo xW 1–xS 2ySe 2(1–y) is reported using chemical vapor deposition. The composition of alloys is tuned by changing the growth temperatures. As a result, the bandgap can be tuned which varies from 1.61 to 1.85 eV. In conclusion, the detailed theoretical calculation supports the experimental observation and shows a possibility of wide tunability of bandgap.

Authors:
 [1];  [1]; ORCiD logo [2];  [1];  [1];  [1]; ORCiD logo [2];  [1];  [1];  [1]
  1. Rice Univ., Houston, TX (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1471942
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 35; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 2D materials; DFT calculations; electron microscopy; optical bandgap; quaternary system

Citation Formats

Susarla, Sandhya, Kutana, Alex, Hachtel, Jordan A., Kochat, Vidya, Apte, Amey, Vajtai, Robert, Idrobo, Juan Carlos, Yakobson, Boris I., Tiwary, Chandra Sekhar, and Ajayan, Pulickel M. Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap [Quaternary Two-Dimensional (2D) Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap]. United States: N. p., 2017. Web. doi:10.1002/adma.201702457.
Susarla, Sandhya, Kutana, Alex, Hachtel, Jordan A., Kochat, Vidya, Apte, Amey, Vajtai, Robert, Idrobo, Juan Carlos, Yakobson, Boris I., Tiwary, Chandra Sekhar, & Ajayan, Pulickel M. Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap [Quaternary Two-Dimensional (2D) Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap]. United States. doi:10.1002/adma.201702457.
Susarla, Sandhya, Kutana, Alex, Hachtel, Jordan A., Kochat, Vidya, Apte, Amey, Vajtai, Robert, Idrobo, Juan Carlos, Yakobson, Boris I., Tiwary, Chandra Sekhar, and Ajayan, Pulickel M. Fri . "Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap [Quaternary Two-Dimensional (2D) Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap]". United States. doi:10.1002/adma.201702457. https://www.osti.gov/servlets/purl/1471942.
@article{osti_1471942,
title = {Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap [Quaternary Two-Dimensional (2D) Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap]},
author = {Susarla, Sandhya and Kutana, Alex and Hachtel, Jordan A. and Kochat, Vidya and Apte, Amey and Vajtai, Robert and Idrobo, Juan Carlos and Yakobson, Boris I. and Tiwary, Chandra Sekhar and Ajayan, Pulickel M.},
abstractNote = {Alloying/doping in 2D material is important due to wide range bandgap tunability. Increasing the number of components would increase the degree of freedom which can provide more flexibility in tuning the bandgap and also reduces the growth temperature. Here, synthesis of quaternary alloys MoxW1–xS2ySe2(1–y) is reported using chemical vapor deposition. The composition of alloys is tuned by changing the growth temperatures. As a result, the bandgap can be tuned which varies from 1.61 to 1.85 eV. In conclusion, the detailed theoretical calculation supports the experimental observation and shows a possibility of wide tunability of bandgap.},
doi = {10.1002/adma.201702457},
journal = {Advanced Materials},
number = 35,
volume = 29,
place = {United States},
year = {2017},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Chemical vapour deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors
journal, January 2016

  • Al-Dulaimi, Naktal; Lewis, David J.; Zhong, Xiang Li
  • Journal of Materials Chemistry C, Vol. 4, Issue 12
  • DOI: 10.1039/C6TC00489J

Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors
journal, September 2016

  • Gao, Jian; Kim, Young Duck; Liang, Liangbo
  • Advanced Materials, Vol. 28, Issue 44
  • DOI: 10.1002/adma.201601104

Phase engineering of transition metal dichalcogenides
journal, January 2015

  • Voiry, Damien; Mohite, Aditya; Chhowalla, Manish
  • Chemical Society Reviews, Vol. 44, Issue 9
  • DOI: 10.1039/C5CS00151J

Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties
journal, November 2012

  • Komsa, Hannu-Pekka; Krasheninnikov, Arkady V.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 23, p. 3652-3656
  • DOI: 10.1021/jz301673x

Two-dimensional material nanophotonics
journal, November 2014


Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged and free excitons
journal, September 2013

  • Tongay, Sefaattin; Suh, Joonki; Ataca, Can
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02657

Nanostructured transition metal dichalcogenide electrocatalysts for CO 2 reduction in ionic liquid
journal, July 2016


Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying
journal, January 2014

  • Kutana, Alex; Penev, Evgeni S.; Yakobson, Boris I.
  • Nanoscale, Vol. 6, Issue 11
  • DOI: 10.1039/C4NR00177J

Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
journal, March 2016


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Synthesis, Properties, and Applications of Transition Metal-Doped Layered Transition Metal Dichalcogenides
journal, March 2016


Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing
journal, April 2013

  • Kang, Jun; Tongay, Sefaattin; Li, Jingbo
  • Journal of Applied Physics, Vol. 113, Issue 14, Article No. 143703
  • DOI: 10.1063/1.4799126

Electroluminescence and Photocurrent Generation from Atomically Sharp WSe 2 /MoS 2 Heterojunction p–n Diodes
journal, September 2014

  • Cheng, Rui; Li, Dehui; Zhou, Hailong
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502075n

Generalized cluster description of multicomponent systems
journal, November 1984

  • Sanchez, J. M.; Ducastelle, F.; Gratias, D.
  • Physica A: Statistical Mechanics and its Applications, Vol. 128, Issue 1-2
  • DOI: 10.1016/0378-4371(84)90096-7

How Much N-Doping Can Graphene Sustain?
journal, December 2014

  • Shi, Zhiming; Kutana, Alex; Yakobson, Boris I.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 1
  • DOI: 10.1021/jz502093c

Ultrathin MoS 2(1– x ) Se 2 x Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction
journal, March 2015

  • Gong, Qiufang; Cheng, Liang; Liu, Changhai
  • ACS Catalysis, Vol. 5, Issue 4
  • DOI: 10.1021/cs501970w

Doping against the Native Propensity of MoS 2 : Degenerate Hole Doping by Cation Substitution
journal, November 2014

  • Suh, Joonki; Park, Tae-Eon; Lin, Der-Yuh
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl503251h

Electronics based on two-dimensional materials
journal, October 2014

  • Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe
  • Nature Nanotechnology, Vol. 9, Issue 10
  • DOI: 10.1038/nnano.2014.207

Ultrasensitive photodetectors based on monolayer MoS2
journal, June 2013

  • Lopez-Sanchez, Oriol; Lembke, Dominik; Kayci, Metin
  • Nature Nanotechnology, Vol. 8, Issue 7
  • DOI: 10.1038/nnano.2013.100

Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures
journal, August 2016

  • Hu, Xiaohui; Kou, Liangzhi; Sun, Litao
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep31122

Tunable Electronic Properties of Two-Dimensional Transition Metal Dichalcogenide Alloys: A First-Principles Prediction
journal, December 2013

  • Xi, Jinyang; Zhao, Tianqi; Wang, Dong
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 2
  • DOI: 10.1021/jz402375s

An electron microscope for the aberration-corrected era
journal, February 2008


Temperature dependence of the energy gap in semiconductors
journal, March 1984

  • Manoogian, A.; Woolley, J. C.
  • Canadian Journal of Physics, Vol. 62, Issue 3
  • DOI: 10.1139/p84-043

Two-Dimensional Molybdenum Tungsten Diselenide Alloys: Photoluminescence, Raman Scattering, and Electrical Transport
journal, June 2014

  • Zhang, Mei; Wu, Juanxia; Zhu, Yiming
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn5020566

Structural Phase Transitions by Design in Monolayer Alloys
journal, December 2015


Predicting Two-Dimensional Silicon Carbide Monolayers
journal, September 2015


Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide
journal, December 2013

  • Gong, Yongji; Liu, Zheng; Lupini, Andrew R.
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl4032296

Band Engineering for Novel Two-Dimensional Atomic Layers
journal, December 2014


    Works referencing / citing this record:

    Field effect properties of single-layer MoS2(1−x)Se2x nanosheets produced by a one-step CVD process
    journal, July 2018


    Field effect properties of single-layer MoS2(1−x)Se2x nanosheets produced by a one-step CVD process
    journal, July 2018