DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide

Abstract

Objective evaluation of the performance of electrocatalysts for CO2 reduction has been complicated by a lack of standardized methods for measuring and reporting activity data. In this perspective, we advocate that standardizing these practices can aid in advancing research efforts toward the development of efficient and selective CO2 reduction electrocatalysts. Using information taken from experimental studies, we identify variables that influence the measured activity of CO2 reduction electrocatalysts and propose procedures to account for these variables in order to improve the accuracy and reproducibility of reported data. We recommend that catalysts be measured under conditions which do not introduce artifacts from impurities, from either the electrolyte or counter electrode, and advocate the acquisition of data measured in the absence of mass transport effects. Furthermore, measured rates of electrochemical reactions should be normalized to both the geometric electrode area as well as the electrochemically active surface area to facilitate the comparison of reported catalysts with those previously known. We demonstrate that, when these factors are accounted for, the CO2 reduction activities of Ag and Cu measured in different laboratories exhibit little difference. Adoption of the recommendations presented in this perspective would greatly facilitate the identification of superior catalysts for CO2 reductionmore » arising solely from changes in their composition and pretreatment.« less

Authors:
 [1];  [1];  [2];  [2];  [3];  [3]; ORCiD logo [4]; ORCiD logo [2]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  2. Stanford Univ., Stanford, CA (United States)
  3. Univ. of California, Berkeley, CA (United States)
  4. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division
OSTI Identifier:
1469215
Alternate Identifier(s):
OSTI ID: 1477340
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 8; Journal Issue: 7; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalyst benchmarking; CO2 reduction; electrocatalysis; experimental protocols; intrinsic activity metrics; mass transfer effects; surface area normalization; surface contamination

Citation Formats

Clark, Ezra L., Resasco, Joaquin, Landers, Alan, Lin, John, Chung, Linh -Thao, Walton, Amber, Hahn, Christopher, Jaramillo, Thomas F., and Bell, Alexis T. Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide. United States: N. p., 2018. Web. doi:10.1021/acscatal.8b01340.
Clark, Ezra L., Resasco, Joaquin, Landers, Alan, Lin, John, Chung, Linh -Thao, Walton, Amber, Hahn, Christopher, Jaramillo, Thomas F., & Bell, Alexis T. Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide. United States. https://doi.org/10.1021/acscatal.8b01340
Clark, Ezra L., Resasco, Joaquin, Landers, Alan, Lin, John, Chung, Linh -Thao, Walton, Amber, Hahn, Christopher, Jaramillo, Thomas F., and Bell, Alexis T. Fri . "Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide". United States. https://doi.org/10.1021/acscatal.8b01340. https://www.osti.gov/servlets/purl/1469215.
@article{osti_1469215,
title = {Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide},
author = {Clark, Ezra L. and Resasco, Joaquin and Landers, Alan and Lin, John and Chung, Linh -Thao and Walton, Amber and Hahn, Christopher and Jaramillo, Thomas F. and Bell, Alexis T.},
abstractNote = {Objective evaluation of the performance of electrocatalysts for CO2 reduction has been complicated by a lack of standardized methods for measuring and reporting activity data. In this perspective, we advocate that standardizing these practices can aid in advancing research efforts toward the development of efficient and selective CO2 reduction electrocatalysts. Using information taken from experimental studies, we identify variables that influence the measured activity of CO2 reduction electrocatalysts and propose procedures to account for these variables in order to improve the accuracy and reproducibility of reported data. We recommend that catalysts be measured under conditions which do not introduce artifacts from impurities, from either the electrolyte or counter electrode, and advocate the acquisition of data measured in the absence of mass transport effects. Furthermore, measured rates of electrochemical reactions should be normalized to both the geometric electrode area as well as the electrochemically active surface area to facilitate the comparison of reported catalysts with those previously known. We demonstrate that, when these factors are accounted for, the CO2 reduction activities of Ag and Cu measured in different laboratories exhibit little difference. Adoption of the recommendations presented in this perspective would greatly facilitate the identification of superior catalysts for CO2 reduction arising solely from changes in their composition and pretreatment.},
doi = {10.1021/acscatal.8b01340},
journal = {ACS Catalysis},
number = 7,
volume = 8,
place = {United States},
year = {Fri Jun 01 00:00:00 EDT 2018},
month = {Fri Jun 01 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 207 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films
journal, April 2012

  • Li, Christina W.; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 17, p. 7231-7234
  • DOI: 10.1021/ja3010978

The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction
journal, January 2012

  • Tang, Wei; Peterson, Andrew A.; Varela, Ana Sofia
  • Phys. Chem. Chem. Phys., Vol. 14, Issue 1
  • DOI: 10.1039/C1CP22700A

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance
journal, August 2017

  • Cheng, Tao; Xiao, Hai; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 139, Issue 34
  • DOI: 10.1021/jacs.7b03300

Electrochemical CO2 Reduction on Metal Electrodes
book, January 2008


Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs
journal, March 2005

  • Gasteiger, Hubert A.; Kocha, Shyam S.; Sompalli, Bhaskar
  • Applied Catalysis B: Environmental, Vol. 56, Issue 1-2, p. 9-35
  • DOI: 10.1016/j.apcatb.2004.06.021

Manipulating the Hydrocarbon Selectivity of Copper Nanoparticles in CO 2 Electroreduction by Process Conditions
journal, December 2014


Engineering Cu surfaces for the electrocatalytic conversion of CO 2 : Controlling selectivity toward oxygenates and hydrocarbons
journal, May 2017

  • Hahn, Christopher; Hatsukade, Toru; Kim, Youn-Geun
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 23
  • DOI: 10.1073/pnas.1618935114

Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces
journal, August 2014

  • Kuhl, Kendra P.; Hatsukade, Toru; Cave, Etosha R.
  • Journal of the American Chemical Society, Vol. 136, Issue 40
  • DOI: 10.1021/ja505791r

Particle Size Effects in the Catalytic Electroreduction of CO 2 on Cu Nanoparticles
journal, May 2014

  • Reske, Rulle; Mistry, Hemma; Behafarid, Farzad
  • Journal of the American Chemical Society, Vol. 136, Issue 19
  • DOI: 10.1021/ja500328k

A selective and efficient electrocatalyst for carbon dioxide reduction
journal, January 2014

  • Lu, Qi; Rosen, Jonathan; Zhou, Yang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4242

Best Practices in Pursuit of Topics in Heterogeneous Electrocatalysis
journal, August 2017


Real surface area measurements in electrochemistry
journal, January 1991


Dissolution of Noble Metals during Oxygen Evolution in Acidic Media
journal, July 2014

  • Cherevko, Serhiy; Zeradjanin, Aleksandar R.; Topalov, Angel A.
  • ChemCatChem, Vol. 6, Issue 8
  • DOI: 10.1002/cctc.201402194

Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO 2 over Cu Nanowire Arrays
journal, April 2016

  • Ma, Ming; Djanashvili, Kristina; Smith, Wilson A.
  • Angewandte Chemie International Edition, Vol. 55, Issue 23
  • DOI: 10.1002/anie.201601282

Catalysis of the electrochemical reduction of carbon dioxide
journal, January 2013

  • Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35360A

Selective Formation of C2 Compounds from Electrochemical Reduction of CO 2 at a Series of Copper Single Crystal Electrodes
journal, January 2002

  • Hori, Yoshio; Takahashi, Ichiro; Koga, Osamu
  • The Journal of Physical Chemistry B, Vol. 106, Issue 1
  • DOI: 10.1021/jp013478d

Subsurface oxide plays a critical role in CO 2 activation by Cu(111) surfaces to form chemisorbed CO 2 , the first step in reduction of CO 2
journal, June 2017

  • Favaro, Marco; Xiao, Hai; Cheng, Tao
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1701405114

Effects of Anion Identity and Concentration on Electrochemical Reduction of CO 2
journal, February 2018


Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide
journal, August 2017

  • Resasco, Joaquin; Chen, Leanne D.; Clark, Ezra
  • Journal of the American Chemical Society, Vol. 139, Issue 32
  • DOI: 10.1021/jacs.7b06765

Direct Observation of the Local Reaction Environment during the Electrochemical Reduction of CO 2
journal, April 2018

  • Clark, Ezra L.; Bell, Alexis T.
  • Journal of the American Chemical Society, Vol. 140, Issue 22
  • DOI: 10.1021/jacs.8b04058

Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution
journal, January 1989

  • Hori, Yoshio; Murata, Akira; Takahashi, Ryutaro
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 85, Issue 8
  • DOI: 10.1039/f19898502309

“Deactivation of copper electrode” in electrochemical reduction of CO2
journal, September 2005


Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials
journal, October 2014

  • Benck, Jesse D.; Hellstern, Thomas R.; Kibsgaard, Jakob
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs500923c

Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Correction: Corrigendum: Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene
journal, September 2016

  • Mistry, Hemma; Varela, Ana Sofia; Bonifacio, Cecile S.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12945

Toward Benchmarking in Catalysis Science: Best Practices, Challenges, and Opportunities
journal, March 2016

  • Bligaard, Thomas; Bullock, R. Morris; Campbell, Charles T.
  • ACS Catalysis, Vol. 6, Issue 4
  • DOI: 10.1021/acscatal.6b00183

Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO 2 and CO at a Cu Electrode
journal, January 1991

  • Murata, Akira; Hori, Yoshio
  • Bulletin of the Chemical Society of Japan, Vol. 64, Issue 1
  • DOI: 10.1246/bcsj.64.123

Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts
journal, July 2015

  • Verdaguer-Casadevall, Arnau; Li, Christina W.; Johansson, Tobias P.
  • Journal of the American Chemical Society, Vol. 137, Issue 31
  • DOI: 10.1021/jacs.5b06227

A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles
journal, March 2016


Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids
journal, February 1979


Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO 2 Reduction
journal, October 2017

  • Cavalca, Filippo; Ferragut, Rafael; Aghion, Stefano
  • The Journal of Physical Chemistry C, Vol. 121, Issue 45
  • DOI: 10.1021/acs.jpcc.7b08278

Effects of temperature and gas–liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO 2 reduction electrocatalysts
journal, January 2016

  • Lobaccaro, Peter; Singh, Meenesh R.; Clark, Ezra Lee
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 38
  • DOI: 10.1039/C6CP05287H

Plasma-Activated Copper Nanocube Catalysts for Efficient Carbon Dioxide Electroreduction to Hydrocarbons and Alcohols
journal, April 2017


The Central Role of Bicarbonate in the Electrochemical Reduction of Carbon Dioxide on Gold
journal, March 2017

  • Dunwell, Marco; Lu, Qi; Heyes, Jeffrey M.
  • Journal of the American Chemical Society, Vol. 139, Issue 10
  • DOI: 10.1021/jacs.6b13287

Highly Dense Cu Nanowires for Low-Overpotential CO2 Reduction
journal, September 2015


Insights into the electrocatalytic reduction of CO 2 on metallic silver surfaces
journal, January 2014

  • Hatsukade, Toru; Kuhl, Kendra P.; Cave, Etosha R.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 27
  • DOI: 10.1039/C4CP00692E

Relationships between Atomic Level Surface Structure and Stability/Activity of Platinum Surface Atoms in Aqueous Environments
journal, March 2016


Electrochemical reduction of CO2 on single crystal electrodes of silver Ag(111), Ag(100) and Ag(110)
journal, December 1997

  • Hoshi, Nagahiro; Kato, Makiko; Hori, Yoshio
  • Journal of Electroanalytical Chemistry, Vol. 440, Issue 1-2, p. 283-286
  • DOI: 10.1016/S0022-0728(97)00447-6

Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts
journal, March 2015

  • Ren, Dan; Deng, Yilin; Handoko, Albertus Denny
  • ACS Catalysis, Vol. 5, Issue 5
  • DOI: 10.1021/cs502128q

A Comparative Study on Gold and Platinum Dissolution in Acidic and Alkaline Media
journal, January 2014

  • Cherevko, Serhiy; Zeradjanin, Aleksandar R.; Keeley, Gareth P.
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0881412jes

Relationship between hydrocarbon production in the electrochemical reduction of CO2 and the characteristics of the Cu electrode
journal, August 1997


Stability and Effects of Subsurface Oxygen in Oxide-Derived Cu Catalyst for CO 2 Reduction
journal, October 2017

  • Liu, Chang; Lourenço, Maicon P.; Hedström, Svante
  • The Journal of Physical Chemistry C, Vol. 121, Issue 45
  • DOI: 10.1021/acs.jpcc.7b08269

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013

  • McCrory, Charles C. L.; Jung, Suho; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja407115p

Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions
journal, October 2005

  • Gupta, N.; Gattrell, M.; MacDougall, B.
  • Journal of Applied Electrochemistry, Vol. 36, Issue 2
  • DOI: 10.1007/s10800-005-9058-y

Turnover Rates in Heterogeneous Catalysis
journal, May 1995


Electrolytic hydrogen evolution reaction on aluminum, oxide-covered electrodes
journal, March 1969


Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide
journal, January 2015

  • Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 29
  • DOI: 10.1039/C5CP03283K

Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα X-rays: XPS detection limits
journal, February 2014

  • Shard, Alexander G.
  • Surface and Interface Analysis, Vol. 46, Issue 3
  • DOI: 10.1002/sia.5406

Impurity Ion Complexation Enhances Carbon Dioxide Reduction Catalysis
journal, June 2015


Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles
journal, September 2014

  • Kim, Dohyung; Resasco, Joaquin; Yu, Yi
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5948

CO 2 Electroreduction with Enhanced Ethylene and Ethanol Selectivity by Nanostructuring Polycrystalline Copper
journal, April 2016


New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
journal, January 2012

  • Kuhl, Kendra P.; Cave, Etosha R.; Abram, David N.
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee21234j

Use of Platinum as the Counter Electrode to Study the Activity of Nonprecious Metal Catalysts for the Hydrogen Evolution Reaction
journal, April 2017


Electroreduction of Carbon Monoxide Over a Copper Nanocube Catalyst: Surface Structure and pH Dependence on Selectivity
journal, February 2016

  • Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders
  • ChemCatChem, Vol. 8, Issue 6
  • DOI: 10.1002/cctc.201501189

Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction
journal, January 2015

  • Dong, Guofa; Fang, Ming; Wang, Hongtao
  • Journal of Materials Chemistry A, Vol. 3, Issue 24
  • DOI: 10.1039/C5TA02551F

Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Tin Oxide Dependence of the CO 2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts
journal, January 2012

  • Chen, Yihong; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 4
  • DOI: 10.1021/ja2108799

Aqueous CO 2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles
journal, November 2012

  • Chen, Yihong; Li, Christina W.; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 49
  • DOI: 10.1021/ja309317u

Differential Electrochemical Mass Spectrometer Cell Design for Online Quantification of Products Produced during Electrochemical Reduction of CO 2
journal, July 2015


Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide
journal, September 2015

  • Kortlever, Ruud; Shen, Jing; Schouten, Klaas Jan P.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 20
  • DOI: 10.1021/acs.jpclett.5b01559

Low energy ion scattering (LEIS). A practical introduction to its theory, instrumentation, and applications
journal, January 2016

  • Cushman, Cody V.; Brüner, Philipp; Zakel, Julia
  • Anal. Methods, Vol. 8, Issue 17
  • DOI: 10.1039/C6AY00765A

A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
journal, January 2014

  • Qiao, Jinli; Liu, Yuyu; Hong, Feng
  • Chem. Soc. Rev., Vol. 43, Issue 2
  • DOI: 10.1039/C3CS60323G

Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction
journal, December 2016

  • Eilert, André; Cavalca, Filippo; Roberts, F. Sloan
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 1
  • DOI: 10.1021/acs.jpclett.6b02273

CRC Handbook of Chemistry and Physics
book, June 2014


Works referencing / citing this record:

A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials
journal, December 2018


Controlled Substrate Transport to Electrocatalyst Active Sites for Enhanced Selectivity in the Carbon Dioxide Reduction Reaction
journal, June 2019


Electrochemical Carbon Dioxide Splitting
journal, February 2019


Multifunctional Transition Metal‐Based Phosphides in Energy‐Related Electrocatalysis
journal, September 2019

  • Li, Yang; Dong, Zihao; Jiao, Lifang
  • Advanced Energy Materials, Vol. 10, Issue 11
  • DOI: 10.1002/aenm.201902104

Structure‐Sensitivity and Electrolyte Effects in CO 2 Electroreduction: From Model Studies to Applications
journal, June 2019

  • Sebastián‐Pascual, Paula; Mezzavilla, Stefano; Stephens, Ifan E. L.
  • ChemCatChem, Vol. 11, Issue 16
  • DOI: 10.1002/cctc.201900552

Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO 2 to CO in a continuous-flow electrolyzer
journal, January 2020

  • Daems, Nick; De Mot, Bert; Choukroun, Daniel
  • Sustainable Energy & Fuels, Vol. 4, Issue 3
  • DOI: 10.1039/c9se00814d

Current achievements and the future direction of electrochemical CO 2 reduction: A short review
journal, June 2019


Electrolyte Effects on the Stability of Ni−Mo Cathodes for the Hydrogen Evolution Reaction
journal, June 2019

  • Wijten, Jochem H. J.; Riemersma, Romy L.; Gauthier, Joseph
  • ChemSusChem, Vol. 12, Issue 15
  • DOI: 10.1002/cssc.201900617

Facet Sensitivity of Capping Ligand-Free Ag Crystals in CO 2 Electrochemical Reduction to CO
journal, October 2018


Enhanced selectivity and activity for electrocatalytic reduction of CO 2 to CO on an anodized Zn/carbon/Ag electrode
journal, January 2019

  • Gao, Yugang; Li, Fengping; Zhou, Peng
  • Journal of Materials Chemistry A, Vol. 7, Issue 28
  • DOI: 10.1039/c9ta04529e

Organic–inorganic hybrids for CO 2 sensing, separation and conversion
journal, January 2020

  • Rebber, Matthias; Willa, Christoph; Koziej, Dorota
  • Nanoscale Horizons, Vol. 5, Issue 3
  • DOI: 10.1039/c9nh00380k

Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels
journal, September 2019

  • Birdja, Yuvraj Y.; Pérez-Gallent, Elena; Figueiredo, Marta C.
  • Nature Energy, Vol. 4, Issue 9
  • DOI: 10.1038/s41560-019-0450-y

Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products
journal, March 2019


Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO 2 reduction to CO
journal, January 2019

  • Wang, Xinyue; Zhao, Qidong; Yang, Bin
  • Journal of Materials Chemistry A, Vol. 7, Issue 44
  • DOI: 10.1039/c9ta09681g

Host–Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO2 Reduction
journal, November 2019


Interplay of Homogeneous Reactions, Mass Transport, and Kinetics in Determining Selectivity of the Reduction of CO 2 on Gold Electrodes
journal, June 2019


Competition between CO 2 Reduction and Hydrogen Evolution on a Gold Electrode under Well-Defined Mass Transport Conditions
journal, February 2020

  • Goyal, Akansha; Marcandalli, Giulia; Mints, Vladislav A.
  • Journal of the American Chemical Society, Vol. 142, Issue 9
  • DOI: 10.1021/jacs.9b10061