DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High‐Pressure/Temperature Behavior of the Alkali/Calcium Carbonate Shortite (Na 2 Ca 2 (CO 3 ) 3 ): Implications for Carbon Sequestration in Earth's Transition Zone

Abstract

Abstract The behavior of shortite (Na 2 Ca 2 (CO 3 ) 3 ) has been probed using synchrotron‐based single crystal X‐ray diffraction and Raman spectroscopy at high pressures and following laser heating to illuminate carbon retention within the deep earth, and phase equilibria of alkali/calcium carbonate‐rich systems. Above 15 GPa, a transition to the shortite‐II structure occurs at 300 K. This phase is novel as it involves a large distortion of the carbonates, with an onset of 3 + 1 coordination and near‐dimerization of carbonate groups. Above 22 GPa, shortite‐II amorphizes. Samples laser heated at pressures between 12 and 30 GPa crystallize in a new structure, shortite‐III. Below 12 GPa, this phase appears to decompose into a mixture of shortite, nyerereite (Na 2 Ca(CO 3 ) 2 ), and aragonite (CaCO 3 ) in accord with prior phase equilibria results. The high‐pressure behavior of nyerereite using Raman spectroscopy was also investigated to 25 GPa. The structural response of shortite to pressure is modulated by the sodium cations in the structure; hence, the behavior of alkali‐rich carbonates within kimberlitic systems at depth is likely dependent on the bonding and local geometry of alkali cations. Our results show that complex, dense high‐pressure structures are generated in the shortite system,more » and phase equilibria of the protoliths of carbonatites and kimberlites at deep upper mantle and transition zone pressures will involve intermediate alkali‐calcium carbonate phases, including the high‐pressure phases of shortite. Moreover, 3 + 1 coordination of carbon is observed at far lower pressures than other systems: this coordination could become important in complex carbonates and possibly liquids at substantially shallower depths than previously anticipated.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Department of Earth and Planetary Sciences University of California Santa Cruz Santa Cruz CA USA
  2. Department of Earth and Planetary Sciences University of California Santa Cruz Santa Cruz CA USA, Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1467753
Grant/Contract Number:  
DE‐AC03‐76SF00098
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Solid Earth
Additional Journal Information:
Journal Name: Journal of Geophysical Research. Solid Earth Journal Volume: 123 Journal Issue: 8; Journal ID: ISSN 2169-9313
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English

Citation Formats

Vennari, Cara E., Beavers, Christine M., and Williams, Quentin. High‐Pressure/Temperature Behavior of the Alkali/Calcium Carbonate Shortite (Na 2 Ca 2 (CO 3 ) 3 ): Implications for Carbon Sequestration in Earth's Transition Zone. United States: N. p., 2018. Web. doi:10.1029/2018JB015846.
Vennari, Cara E., Beavers, Christine M., & Williams, Quentin. High‐Pressure/Temperature Behavior of the Alkali/Calcium Carbonate Shortite (Na 2 Ca 2 (CO 3 ) 3 ): Implications for Carbon Sequestration in Earth's Transition Zone. United States. https://doi.org/10.1029/2018JB015846
Vennari, Cara E., Beavers, Christine M., and Williams, Quentin. Wed . "High‐Pressure/Temperature Behavior of the Alkali/Calcium Carbonate Shortite (Na 2 Ca 2 (CO 3 ) 3 ): Implications for Carbon Sequestration in Earth's Transition Zone". United States. https://doi.org/10.1029/2018JB015846.
@article{osti_1467753,
title = {High‐Pressure/Temperature Behavior of the Alkali/Calcium Carbonate Shortite (Na 2 Ca 2 (CO 3 ) 3 ): Implications for Carbon Sequestration in Earth's Transition Zone},
author = {Vennari, Cara E. and Beavers, Christine M. and Williams, Quentin},
abstractNote = {Abstract The behavior of shortite (Na 2 Ca 2 (CO 3 ) 3 ) has been probed using synchrotron‐based single crystal X‐ray diffraction and Raman spectroscopy at high pressures and following laser heating to illuminate carbon retention within the deep earth, and phase equilibria of alkali/calcium carbonate‐rich systems. Above 15 GPa, a transition to the shortite‐II structure occurs at 300 K. This phase is novel as it involves a large distortion of the carbonates, with an onset of 3 + 1 coordination and near‐dimerization of carbonate groups. Above 22 GPa, shortite‐II amorphizes. Samples laser heated at pressures between 12 and 30 GPa crystallize in a new structure, shortite‐III. Below 12 GPa, this phase appears to decompose into a mixture of shortite, nyerereite (Na 2 Ca(CO 3 ) 2 ), and aragonite (CaCO 3 ) in accord with prior phase equilibria results. The high‐pressure behavior of nyerereite using Raman spectroscopy was also investigated to 25 GPa. The structural response of shortite to pressure is modulated by the sodium cations in the structure; hence, the behavior of alkali‐rich carbonates within kimberlitic systems at depth is likely dependent on the bonding and local geometry of alkali cations. Our results show that complex, dense high‐pressure structures are generated in the shortite system, and phase equilibria of the protoliths of carbonatites and kimberlites at deep upper mantle and transition zone pressures will involve intermediate alkali‐calcium carbonate phases, including the high‐pressure phases of shortite. Moreover, 3 + 1 coordination of carbon is observed at far lower pressures than other systems: this coordination could become important in complex carbonates and possibly liquids at substantially shallower depths than previously anticipated.},
doi = {10.1029/2018JB015846},
journal = {Journal of Geophysical Research. Solid Earth},
number = 8,
volume = 123,
place = {United States},
year = {Wed Aug 29 00:00:00 EDT 2018},
month = {Wed Aug 29 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1029/2018JB015846

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Post-aragonite phase transformation in CaCO3 at 40 GPa
journal, April 2005


How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland
journal, November 2009


Phase relations on the K 2 CO 3 -CaCO 3 -MgCO 3 join at 6 GPa and 900–1400 °C: Implications for incipient melting in carbonated mantle domains
journal, February 2016

  • Shatskiy, Anton; Litasov, Konstantin D.; Palyanov, Yuri N.
  • American Mineralogist, Vol. 101, Issue 2
  • DOI: 10.2138/am-2016-5332

The equation of state and high-pressure behavior of magnesite
journal, August 1997


Solidus of alkaline carbonatite in the deep mantle
journal, January 2013

  • Litasov, Konstantin D.; Shatskiy, Anton; Ohtani, Eiji
  • Geology, Vol. 41, Issue 1
  • DOI: 10.1130/G33488.1

Carbon solubility in mantle minerals
journal, May 2006

  • Shcheka, Svyatoslav S.; Wiedenbeck, Michael; Frost, Daniel J.
  • Earth and Planetary Science Letters, Vol. 245, Issue 3-4
  • DOI: 10.1016/j.epsl.2006.03.036

Crystal structure of Ca2Na2(CO3)3 (shortite)
journal, March 1971

  • Dickens, B.; Hyman, A.; Brown, W. E.
  • Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, Vol. 75A, Issue 2
  • DOI: 10.6028/jres.075A.013

Tetrahedrally coordinated carbonates in Earth’s lower mantle
journal, February 2015

  • Boulard, Eglantine; Pan, Ding; Galli, Giulia
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7311

Crystal structure, high-pressure, and high-temperature behavior of carbonates in the K 2 Mg(CO 3 ) 2 –Na 2 Mg(CO 3 ) 2 join
journal, November 2015

  • Golubkova, Anastasia; Merlini, Marco; Schmidt, Max W.
  • American Mineralogist, Vol. 100, Issue 11-12
  • DOI: 10.2138/am-2015-5219

The transport of carbon and hydrogen in subducted oceanic crust: An experimental study to 5 GPa
journal, February 2009

  • Poli, Stefano; Franzolin, Ettore; Fumagalli, Patrizia
  • Earth and Planetary Science Letters, Vol. 278, Issue 3-4
  • DOI: 10.1016/j.epsl.2008.12.022

Carbonates from the lower part of transition zone or even the lower mantle
journal, August 2007

  • Brenker, Frank E.; Vollmer, Christian; Vincze, Laszlo
  • Earth and Planetary Science Letters, Vol. 260, Issue 1-2
  • DOI: 10.1016/j.epsl.2007.02.038

A high-pressure infrared and Raman spectroscopic study of BaCO3: the aragonite, trigonal and Pmmn structures
journal, August 2014

  • Chaney, Jered; Santillán, Javier D.; Knittle, Elise
  • Physics and Chemistry of Minerals, Vol. 42, Issue 1
  • DOI: 10.1007/s00269-014-0702-0

The oxidation state of the mantle and the extraction of carbon from Earth’s interior
journal, January 2013

  • Stagno, Vincenzo; Ojwang, Dickson O.; McCammon, Catherine A.
  • Nature, Vol. 493, Issue 7430
  • DOI: 10.1038/nature11679

Slab melting as a barrier to deep carbon subduction
journal, January 2016

  • Thomson, Andrew R.; Walter, Michael J.; Kohn, Simon C.
  • Nature, Vol. 529, Issue 7584
  • DOI: 10.1038/nature16174

OLEX2 : a complete structure solution, refinement and analysis program
journal, January 2009

  • Dolomanov, Oleg V.; Bourhis, Luc J.; Gildea, Richard J.
  • Journal of Applied Crystallography, Vol. 42, Issue 2
  • DOI: 10.1107/S0021889808042726

Raman spectroscopic studies of carbonates part I: High-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite
journal, May 1993

  • Gillet, Philippe; Biellmann, Claudine; Reynard, Bruno
  • Physics and Chemistry of Minerals, Vol. 20, Issue 1
  • DOI: 10.1007/BF00202245

Mantle solidus: Experimental constraints and the effects of peridotite composition: MANTLE SOLIDUS
journal, October 2000

  • Hirschmann, Marc M.
  • Geochemistry, Geophysics, Geosystems, Vol. 1, Issue 10
  • DOI: 10.1029/2000GC000070

Chemical composition of nyerereite and gregoryite from natrocarbonatites of Oldoinyo Lengai volcano, Tanzania
journal, December 2009


ShelXle : a Qt graphical user interface for SHELXL
journal, November 2011

  • Hübschle, Christian B.; Sheldrick, George M.; Dittrich, Birger
  • Journal of Applied Crystallography, Vol. 44, Issue 6
  • DOI: 10.1107/S0021889811043202

Experiments on CaCO3-MgCO3 solid solutions at high pressure and temperature
journal, February 2006


The WURM project--a freely available web-based repository of computed physical data for minerals
journal, February 2011


Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions
journal, January 1986

  • Mao, H. K.; Xu, J.; Bell, P. M.
  • Journal of Geophysical Research, Vol. 91, Issue B5, p. 4673-4676
  • DOI: 10.1029/JB091iB05p04673

Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle
journal, May 2001

  • Kerrick, D. M.; Connolly, J. A. D.
  • Nature, Vol. 411, Issue 6835
  • DOI: 10.1038/35077056

New anvil designs in diamond-cells
journal, September 2004


Do carbonate liquids become denser than silicate liquids at pressure? Constraints from the fusion curve of K2CO3 to 3.2 GPa
journal, September 2006

  • Liu, Qiong; Tenner, Travis J.; Lange, Rebecca A.
  • Contributions to Mineralogy and Petrology, Vol. 153, Issue 1
  • DOI: 10.1007/s00410-006-0134-z

A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite
journal, June 2004


Peridotite, kimberlite, and carbonatite explained in the system CaO-MgO-SiO2-CO2
journal, January 1975


A high-pressure phase transition of calcite-III
journal, October 2005


CIF applications. XV. enCIFer : a program for viewing, editing and visualizing CIFs
journal, March 2004

  • Allen, Frank H.; Johnson, Owen; Shields, Gregory P.
  • Journal of Applied Crystallography, Vol. 37, Issue 2
  • DOI: 10.1107/S0021889804003528

Melting of K-rich carbonated peridotite at 6–10GPa and the stability of K-phases in the upper mantle
journal, February 2011


The geology of Oldoinyo Lengai
journal, December 1962


High-pressure Raman study of nyerereite from Oldoinyo Lengai: High-pressure Raman study of nyerereite from Oldoinyo Lengai
journal, April 2017

  • Rashchenko, Sergey V.; Goryainov, Sergey V.; Romanenko, Alexander V.
  • Journal of Raman Spectroscopy, Vol. 48, Issue 11
  • DOI: 10.1002/jrs.5152

Crystal structure refinement with SHELXL
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section C Structural Chemistry, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053229614024218

Carbonate stability in the Earth's mantle: A vibrational spectroscopic study of aragonite and dolomite at high pressures and temperatures
journal, January 1991

  • Kraft, Susan; Knittle, Elise; Williams, Quentin
  • Journal of Geophysical Research, Vol. 96, Issue B11
  • DOI: 10.1029/91JB01749

Raman and infrared spectroscopic study of the anhydrous carbonate minerals shortite and barytocalcite
journal, November 2008

  • Frost, Ray L.; Dickfos, Marilla J.
  • Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 71, Issue 1
  • DOI: 10.1016/j.saa.2007.11.021

Hydrothermal Synthesis and Structure Solution of Na 2 Ca(CO 3 ) 2 : “Synthetic Analogue” of Mineral Nyerereite
journal, February 2016

  • Gavryushkin, Pavel N.; Thomas, Victor G.; Bolotina, Nadezhda B.
  • Crystal Growth & Design, Vol. 16, Issue 4
  • DOI: 10.1021/acs.cgd.5b01398

Carbonation by fluid–rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones
journal, July 2016

  • Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier
  • Earth and Planetary Science Letters, Vol. 445
  • DOI: 10.1016/j.epsl.2016.03.045

The Melting of Carbonated Pelites from 70 to 700 km Depth
journal, February 2011


New experimental data on phase relations for the system Na2CO3-CaCO3 at 6 GPa and 900-1400  C
journal, November 2013

  • Shatskiy, A.; Sharygin, I. S.; Litasov, K. D.
  • American Mineralogist, Vol. 98, Issue 11-12
  • DOI: 10.2138/am.2013.4436

A novel carbon bonding environment in deep mantle high-pressure dolomite
journal, January 2018

  • Vennari, Cara E.; Williams, Quentin
  • American Mineralogist, Vol. 103, Issue 1
  • DOI: 10.2138/am-2018-6270

Standard Reference Material (SRM 1990) for single crystal diffractometer alignment
journal, November 2001

  • Wong-Ng, W.; Siegrist, T.; De Titta, G. T.
  • Journal of Research of the National Institute of Standards and Technology, Vol. 106, Issue 6
  • DOI: 10.6028/jres.106.058

Phase transitions in the system CaCO3 at high P and T determined by in situ vibrational spectroscopy in diamond anvil cells and first-principles simulations
journal, May 2016

  • Koch-Müller, Monika; Jahn, Sandro; Birkholz, Natalie
  • Physics and Chemistry of Minerals, Vol. 43, Issue 8
  • DOI: 10.1007/s00269-016-0815-8

Trona at extreme conditions: A pollutant-sequestering material at high pressures and low temperatures
journal, October 2014

  • O'Bannon, E.; Beavers, C. M.; Williams, Q.
  • American Mineralogist, Vol. 99, Issue 10
  • DOI: 10.2138/am-2014-4919

A Raman microprobe study of melt inclusions in kimberlites from Siberia, Canada, SW Greenland and South Africa
journal, October 2011

  • Mernagh, Terrence P.; Kamenetsky, Vadim S.; Kamenetsky, Maya B.
  • Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 80, Issue 1
  • DOI: 10.1016/j.saa.2011.01.034

The system Na2CO3-FeCO3 at 6 GPa and its relation to the system Na2CO3-FeCO3-MgCO3
journal, December 2014

  • Shatskiy, A.; Rashchenko, S. V.; Ohtani, E.
  • American Mineralogist, Vol. 100, Issue 1
  • DOI: 10.2138/am-2015-4777

Inclusions in Sublithospheric Diamonds: Glimpses of Deep Earth
journal, March 2005


Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle
journal, August 2012

  • Merlini, M.; Crichton, W. A.; Hanfland, M.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 34
  • DOI: 10.1073/pnas.1201336109