DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A reproducing kernel enhanced approach for peridynamic solutions

Abstract

The most common discretization method for peridynamic models used in engineering problems is the node-based meshfree approach. This method discretizes peridynamic domains by a set of nodes, each associated with a nodal cell with a characteristic volume, leading to a particle-based description of continuum systems. The behavior of each particle is then considered representative of its cell. This limits the convergence rate to the first order. In this paper, we introduce a reproducing kernel (RK) approximation to the field variables in the peridynamic equations to increase the order of convergence of peridynamic numerical solutions. Furthermore, the numerical results demonstrate improved convergence rates in static peridynamic problems using the proposed method.

Authors:
 [1];  [2]; ORCiD logo [1];  [2]; ORCiD logo [3]
  1. Univ. of California San Diego, La Jolla, CA (United States)
  2. The Univ. of Texas at Austin, Austin, TX (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1465030
Alternate Identifier(s):
OSTI ID: 1548232
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Computer Methods in Applied Mechanics and Engineering
Additional Journal Information:
Journal Volume: 340; Journal Issue: C; Journal ID: ISSN 0045-7825
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; Peridynamics; Reproducing kernel approximation; Meshfree method; Domain integration; Nonlocal

Citation Formats

Pasetto, Marco, Leng, Yu, Chen, Jiun -Shyan, Foster, John T., and Seleson, Pablo D. A reproducing kernel enhanced approach for peridynamic solutions. United States: N. p., 2018. Web. doi:10.1016/j.cma.2018.05.010.
Pasetto, Marco, Leng, Yu, Chen, Jiun -Shyan, Foster, John T., & Seleson, Pablo D. A reproducing kernel enhanced approach for peridynamic solutions. United States. https://doi.org/10.1016/j.cma.2018.05.010
Pasetto, Marco, Leng, Yu, Chen, Jiun -Shyan, Foster, John T., and Seleson, Pablo D. Tue . "A reproducing kernel enhanced approach for peridynamic solutions". United States. https://doi.org/10.1016/j.cma.2018.05.010. https://www.osti.gov/servlets/purl/1465030.
@article{osti_1465030,
title = {A reproducing kernel enhanced approach for peridynamic solutions},
author = {Pasetto, Marco and Leng, Yu and Chen, Jiun -Shyan and Foster, John T. and Seleson, Pablo D.},
abstractNote = {The most common discretization method for peridynamic models used in engineering problems is the node-based meshfree approach. This method discretizes peridynamic domains by a set of nodes, each associated with a nodal cell with a characteristic volume, leading to a particle-based description of continuum systems. The behavior of each particle is then considered representative of its cell. This limits the convergence rate to the first order. In this paper, we introduce a reproducing kernel (RK) approximation to the field variables in the peridynamic equations to increase the order of convergence of peridynamic numerical solutions. Furthermore, the numerical results demonstrate improved convergence rates in static peridynamic problems using the proposed method.},
doi = {10.1016/j.cma.2018.05.010},
journal = {Computer Methods in Applied Mechanics and Engineering},
number = C,
volume = 340,
place = {United States},
year = {Tue May 22 00:00:00 EDT 2018},
month = {Tue May 22 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Meshfree discretization with RK approximation kernel function.

Save / Share:

Works referenced in this record:

Reformulation of elasticity theory for discontinuities and long-range forces
journal, January 2000


Peridynamic States and Constitutive Modeling
journal, July 2007


A Nonlocal Approach to Modeling Crack Nucleation in AA 7075-T651
conference, August 2012

  • Littlewood, David J.
  • ASME 2011 International Mechanical Engineering Congress and Exposition, Volume 8: Mechanics of Solids, Structures and Fluids; Vibration, Acoustics and Wave Propagation
  • DOI: 10.1115/IMECE2011-64236

Crack nucleation in a peridynamic solid
journal, January 2010

  • Silling, S. A.; Weckner, O.; Askari, E.
  • International Journal of Fracture, Vol. 162, Issue 1-2
  • DOI: 10.1007/s10704-010-9447-z

Prediction of crack paths in a quenched glass plate by using peridynamic theory
journal, April 2009


A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis
journal, January 2017


Studies of dynamic crack propagation and crack branching with peridynamics
journal, January 2010


Characteristics of dynamic brittle fracture captured with peridynamics
journal, April 2011


Damage and progressive failure of concrete structures using non-local peridynamic modeling
journal, February 2011

  • Huang, Dan; Zhang, Qing; Qiao, PiZhong
  • Science China Technological Sciences, Vol. 54, Issue 3
  • DOI: 10.1007/s11431-011-4306-3

Peridynamic modeling of concrete structures
journal, July 2007


Peridynamic modeling of composite laminates under explosive loading
journal, June 2016


Peridynamic analysis of fiber-reinforced composite materials
journal, January 2012

  • Oterkus, Erkan; Madenci, Erdogan
  • Journal of Mechanics of Materials and Structures, Vol. 7, Issue 1
  • DOI: 10.2140/jomms.2012.7.45

Peridynamic Analysis of Impact Damage in Composite Laminates
journal, July 2008


Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites
journal, April 2012

  • Hu, Wenke; Ha, Youn Doh; Bobaru, Florin
  • Computer Methods in Applied Mechanics and Engineering, Vol. 217-220
  • DOI: 10.1016/j.cma.2012.01.016

Peridynamics for predicting damage and its growth in composites
journal, April 2017

  • Hu, Y.; Madenci, E.; Phan, N.
  • Fatigue & Fracture of Engineering Materials & Structures, Vol. 40, Issue 8
  • DOI: 10.1111/ffe.12618

Peridynamic modeling of delamination growth in composite laminates
journal, November 2015


Peridynamics for multiscale materials modeling
journal, July 2008


Modelling of Granular Fracture in Polycrystalline Materials Using Ordinary State-Based Peridynamics
journal, December 2016

  • Zhu, Ning; De Meo, Dennj; Oterkus, Erkan
  • Materials, Vol. 9, Issue 12
  • DOI: 10.3390/ma9120977

A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media
journal, July 2014

  • Ghajari, M.; Iannucci, L.; Curtis, P.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 276
  • DOI: 10.1016/j.cma.2014.04.002

Convergence of Peridynamics to Classical Elasticity Theory
journal, April 2008


Analysis and Comparison of Different Approximations to Nonlocal Diffusion and Linear Peridynamic Equations
journal, January 2013

  • Tian, Xiaochuan; Du, Qiang
  • SIAM Journal on Numerical Analysis, Vol. 51, Issue 6
  • DOI: 10.1137/13091631X

The Peridynamic Equation and its Spatial Discretisation
journal, March 2007


A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions
journal, August 2016

  • Xu, Feifei; Gunzburger, Max; Burkardt, John
  • Computer Methods in Applied Mechanics and Engineering, Vol. 307
  • DOI: 10.1016/j.cma.2016.04.020

A Multiscale Implementation Based on Adaptive Mesh Refinement for the Nonlocal Peridynamics Model in One Dimension
journal, January 2016

  • Xu, Feifei; Gunzburger, Max; Burkardt, John
  • Multiscale Modeling & Simulation, Vol. 14, Issue 1
  • DOI: 10.1137/15M1010300

A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model
journal, October 2012


A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models
journal, May 2013


Peridynamics via finite element analysis
journal, November 2007


Continuous and discontinuous finite element methods for a peridynamics model of mechanics
journal, February 2011

  • Chen, X.; Gunzburger, Max
  • Computer Methods in Applied Mechanics and Engineering, Vol. 200, Issue 9-12
  • DOI: 10.1016/j.cma.2010.10.014

Convergence, adaptive refinement, and scaling in 1D peridynamics
journal, February 2009

  • Bobaru, Florin; Yang, Mijia; Alves, Leonardo Frota
  • International Journal for Numerical Methods in Engineering, Vol. 77, Issue 6
  • DOI: 10.1002/nme.2439

Implementing peridynamics within a molecular dynamics code
journal, December 2008

  • Parks, Michael L.; Lehoucq, Richard B.; Plimpton, Steven J.
  • Computer Physics Communications, Vol. 179, Issue 11
  • DOI: 10.1016/j.cpc.2008.06.011

A meshfree method based on the peridynamic model of solid mechanics
journal, June 2005


On the similarity of meshless discretizations of Peridynamics and Smooth-Particle Hydrodynamics
journal, April 2015


A meshfree unification: reproducing kernel peridynamics
journal, January 2014


On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models
journal, November 2016

  • Seleson, Pablo; Du, Qiang; Parks, Michael L.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 311
  • DOI: 10.1016/j.cma.2016.07.039

Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures
journal, December 1996

  • Chen, Jiun-Shyan; Pan, Chunhui; Wu, Cheng-Tang
  • Computer Methods in Applied Mechanics and Engineering, Vol. 139, Issue 1-4
  • DOI: 10.1016/S0045-7825(96)01083-3

Reproducing kernel particle methods
journal, April 1995

  • Liu, Wing Kam; Jun, Sukky; Zhang, Yi Fei
  • International Journal for Numerical Methods in Fluids, Vol. 20, Issue 8-9
  • DOI: 10.1002/fld.1650200824

Smoothed Particle Hydrodynamics
journal, September 1992


Mesh sensitivity in peridynamic simulations
journal, January 2014


Peridynamic Theory of Solid Mechanics
book, September 2010


A position-aware linear solid constitutive model for peridynamics
journal, January 2015

  • Mitchell, John; Silling, Stewart; Littlewood, David
  • Journal of Mechanics of Materials and Structures, Vol. 10, Issue 5
  • DOI: 10.2140/jomms.2015.10.539

Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints
journal, January 2012

  • Du, Qiang; Gunzburger, Max; Lehoucq, R. B.
  • SIAM Review, Vol. 54, Issue 4
  • DOI: 10.1137/110833294

A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems
journal, January 2010

  • Gunzburger, Max; Lehoucq, R. B.
  • Multiscale Modeling & Simulation, Vol. 8, Issue 5
  • DOI: 10.1137/090766607

The bond-based peridynamic system with Dirichlet-type volume constraint
journal, January 2014

  • Mengesha, Tadele; Du, Qiang
  • Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Vol. 144, Issue 1
  • DOI: 10.1017/S0308210512001436

Adaptive Refinement and Multiscale Modeling in 2d Peridynamics
journal, January 2011


Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations
journal, December 2014


A Lagrangian reproducing kernel particle method for metal forming analysis
journal, September 1998

  • Chen, Jiun-Shyan; Pan, C.; Roque, C. M. O. L.
  • Computational Mechanics, Vol. 22, Issue 3
  • DOI: 10.1007/s004660050361

Implementation of boundary conditions for meshless methods
journal, September 1998

  • Günther, Frank C.; Liu, Wing Kam
  • Computer Methods in Applied Mechanics and Engineering, Vol. 163, Issue 1-4
  • DOI: 10.1016/S0045-7825(98)00014-0

Meshfree Methods: Progress Made after 20 Years
journal, April 2017


A reproducing kernel method with nodal interpolation property
journal, January 2003

  • Chen, Jiun-Shyan; Han, Weimin; You, Yang
  • International Journal for Numerical Methods in Engineering, Vol. 56, Issue 7
  • DOI: 10.1002/nme.592

New boundary condition treatments in meshfree computation of contact problems
journal, July 2000


Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind
journal, July 1971

  • Nitsche, J.
  • Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Vol. 36, Issue 1
  • DOI: 10.1007/BF02995904

Imposing essential boundary conditions in mesh-free methods
journal, March 2004

  • Fernández-Méndez, Sonia; Huerta, Antonio
  • Computer Methods in Applied Mechanics and Engineering, Vol. 193, Issue 12-14
  • DOI: 10.1016/j.cma.2003.12.019

Element-free Galerkin methods
journal, January 1994

  • Belytschko, T.; Lu, Y. Y.; Gu, L.
  • International Journal for Numerical Methods in Engineering, Vol. 37, Issue 2
  • DOI: 10.1002/nme.1620370205

On the role of the Influence Function in the Peridynamic Theory
journal, January 2011


Works referencing / citing this record:

Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives
journal, February 2019

  • Akgül, Esra Karatas
  • Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 29, Issue 2
  • DOI: 10.1063/1.5084035