DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons

Abstract

We report on the experimental demonstration and electrical characterization of N = 7 armchair graphene nanoribbon (7-AGNR) field effect transistors. The back-gated transistors are fabricated from atomically precise and highly aligned 7-AGNRs, synthesized with a bottom-up approach. The large area transfer process holds the promise of scalable device fabrication with atomically precise nanoribbons. The channels of the FETs are approximately 30 times longer than the average nanoribbon length of 30 nm to 40 nm. The density of the GNRs is high, so that transport can be assumed well-above the percolation threshold. The long channel transistors exhibit a maximum ION/IOFF current ratio of 87.5.

Authors:
 [1];  [2]; ORCiD logo [3];  [4]; ORCiD logo [4]; ORCiD logo [3]; ORCiD logo [5]
  1. AMO GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Strasse 25, Aachen, Germany
  2. Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Strasse 2, Aachen, Germany
  3. II. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, Köln, Germany
  4. Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
  5. AMO GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Strasse 25, Aachen, Germany, Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Strasse 2, Aachen, Germany
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Rheinisch Westfalische Technische Hochschule Aachen (RWTH) Aachen Univ., Aachen (Germany)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1430749
Alternate Identifier(s):
OSTI ID: 1461136; OSTI ID: 1508758
Grant/Contract Number:  
SC0010409; AC02-05CH11231; 648589; NW-1-1-036b
Resource Type:
Published Article
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Name: ACS Applied Materials and Interfaces Journal Volume: 10 Journal Issue: 12; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 7-AGNRs; back-gated field-effect transistors; bandgap; graphene nanoribbons; mobility

Citation Formats

Passi, Vikram, Gahoi, Amit, Senkovskiy, Boris V., Haberer, Danny, Fischer, Felix R., Grüneis, Alexander, and Lemme, Max C. Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons. United States: N. p., 2018. Web. doi:10.1021/acsami.8b01116.
Passi, Vikram, Gahoi, Amit, Senkovskiy, Boris V., Haberer, Danny, Fischer, Felix R., Grüneis, Alexander, & Lemme, Max C. Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons. United States. https://doi.org/10.1021/acsami.8b01116
Passi, Vikram, Gahoi, Amit, Senkovskiy, Boris V., Haberer, Danny, Fischer, Felix R., Grüneis, Alexander, and Lemme, Max C. Thu . "Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons". United States. https://doi.org/10.1021/acsami.8b01116.
@article{osti_1430749,
title = {Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons},
author = {Passi, Vikram and Gahoi, Amit and Senkovskiy, Boris V. and Haberer, Danny and Fischer, Felix R. and Grüneis, Alexander and Lemme, Max C.},
abstractNote = {We report on the experimental demonstration and electrical characterization of N = 7 armchair graphene nanoribbon (7-AGNR) field effect transistors. The back-gated transistors are fabricated from atomically precise and highly aligned 7-AGNRs, synthesized with a bottom-up approach. The large area transfer process holds the promise of scalable device fabrication with atomically precise nanoribbons. The channels of the FETs are approximately 30 times longer than the average nanoribbon length of 30 nm to 40 nm. The density of the GNRs is high, so that transport can be assumed well-above the percolation threshold. The long channel transistors exhibit a maximum ION/IOFF current ratio of 87.5.},
doi = {10.1021/acsami.8b01116},
journal = {ACS Applied Materials and Interfaces},
number = 12,
volume = 10,
place = {United States},
year = {Thu Mar 08 00:00:00 EST 2018},
month = {Thu Mar 08 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acsami.8b01116

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Carbon nanotube complementary logic with low-temperature processed end-bonded metal contacts
conference, December 2016

  • Tang, Jianshi; Cao, Qing; Farmer, Damon B.
  • 2016 IEEE International Electron Devices Meeting (IEDM)
  • DOI: 10.1109/IEDM.2016.7838350

Graphene-based biosensor using transport properties
journal, January 2011


Energy Gaps in Graphene Nanoribbons
journal, November 2006


Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing
journal, January 2013

  • Jariwala, Deep; Sangwan, Vinod K.; Lauhon, Lincoln J.
  • Chem. Soc. Rev., Vol. 42, Issue 7
  • DOI: 10.1039/C2CS35335K

Simulation of Graphene Nanoribbon Field-Effect Transistors
journal, August 2007


Nanomaterials in transistors: From high-performance to thin-film applications
journal, August 2015


Making Graphene Nanoribbons Photoluminescent
journal, April 2017


Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons
journal, September 2017

  • Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-00734-x

Electronic Structure and Stability of Semiconducting Graphene Nanoribbons
journal, December 2006

  • Barone, Verónica; Hod, Oded; Scuseria, Gustavo E.
  • Nano Letters, Vol. 6, Issue 12
  • DOI: 10.1021/nl0617033

Bottom-up graphene nanoribbon field-effect transistors
journal, December 2013

  • Bennett, Patrick B.; Pedramrazi, Zahra; Madani, Ali
  • Applied Physics Letters, Vol. 103, Issue 25
  • DOI: 10.1063/1.4855116

Contact resistance study of various metal electrodes with CVD graphene
journal, November 2016


Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from Au(788)
journal, January 2018

  • Ohtomo, Manabu; Sekine, Yoshiaki; Hibino, Hiroki
  • Applied Physics Letters, Vol. 112, Issue 2
  • DOI: 10.1063/1.5006984

Atomically precise bottom-up fabrication of graphene nanoribbons
journal, July 2010

  • Cai, Jinming; Ruffieux, Pascal; Jaafar, Rached
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09211

Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors
journal, February 2008


A Review of Carbon Nanotube- and Graphene-Based Flexible Thin-Film Transistors
journal, March 2013


Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
journal, April 2009

  • Kosynkin, Dmitry V.; Higginbotham, Amanda L.; Sinitskii, Alexander
  • Nature, Vol. 458, Issue 7240
  • DOI: 10.1038/nature07872

Comparison of mobility extraction methods based on field-effect measurements for graphene
journal, May 2015

  • Zhong, Hua; Zhang, Zhiyong; Xu, Haitao
  • AIP Advances, Vol. 5, Issue 5
  • DOI: 10.1063/1.4921400

Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics
journal, January 2013

  • Cao, Qing; Han, Shu-jen; Tulevski, George S.
  • Nature Nanotechnology, Vol. 8, Issue 3
  • DOI: 10.1038/nnano.2012.257

Carbon Nanotubes as Schottky Barrier Transistors
journal, August 2002


Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
journal, December 1996


Graphene nano-ribbon electronics
journal, December 2007

  • Chen, Zhihong; Lin, Yu-Ming; Rooks, Michael J.
  • Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, Issue 2, p. 228-232
  • DOI: 10.1016/j.physe.2007.06.020

Semiconductor-to-Metal Transition and Quasiparticle Renormalization in Doped Graphene Nanoribbons
journal, March 2017

  • Senkovskiy, Boris V.; Fedorov, Alexander V.; Haberer, Danny
  • Advanced Electronic Materials, Vol. 3, Issue 4
  • DOI: 10.1002/aelm.201600490

Narrow graphene nanoribbons from carbon nanotubes
journal, April 2009


Room-temperature transistor based on a single carbon nanotube
journal, May 1998

  • Tans, Sander J.; Verschueren, Alwin R. M.; Dekker, Cees
  • Nature, Vol. 393, Issue 6680
  • DOI: 10.1038/29954

Large-Area Assembly of Densely Aligned Single-Walled Carbon Nanotubes Using Solution Shearing and Their Application to Field-Effect Transistors
journal, March 2015

  • Park, Steve; Pitner, Gregory; Giri, Gaurav
  • Advanced Materials, Vol. 27, Issue 16
  • DOI: 10.1002/adma.201405289

Symmetry properties of vibrational modes in graphene nanoribbons
journal, May 2010


Electronic Structure of Spatially Aligned Graphene Nanoribbons on Au(788)
journal, May 2012


Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors
journal, May 2008


Deposition, Characterization, and Thin-Film-Based Chemical Sensing of Ultra-long Chemically Synthesized Graphene Nanoribbons
journal, May 2014

  • Abbas, Ahmad N.; Liu, Gang; Narita, Akimitsu
  • Journal of the American Chemical Society, Vol. 136, Issue 21
  • DOI: 10.1021/ja502764d

Electrical properties of graphene-metal contacts
journal, July 2017


Energy Band-Gap Engineering of Graphene Nanoribbons
journal, May 2007


Fundamental Performance Limits of Carbon Nanotube Thin-Film Transistors Achieved Using Hybrid Molecular Dielectrics
journal, July 2012

  • Sangwan, Vinod K.; Ortiz, Rocio Ponce; Alaboson, Justice M. P.
  • ACS Nano, Vol. 6, Issue 8
  • DOI: 10.1021/nn302768h