DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films

Abstract

Here, the use of semiconductor nanocrystal quantum dots (QDs) in optoelectronic devices typically requires postsynthetic chemical surface treatments to enhance electronic coupling between QDs and allow for efficient charge transport in QD films. Despite their importance in solar cells and infrared (IR) light-emitting diodes and photodetectors, advances in these chemical treatments for lead chalcogenide (PbE; E = S, Se, Te) QDs have lagged behind those of, for instance, II–VI semiconductor QDs. Here, we introduce a method for fast and effective ligand exchange for PbE QDs in solution, resulting in QDs completely passivated by a wide range of small anionic ligands. Due to electrostatic stabilization, these QDs are readily dispersible in polar solvents, in which they form highly concentrated solutions that remain stable for months. QDs of all three Pb chalcogenides retain their photoluminescence, allowing for a detailed study of the effect of the surface ionic double layer on electronic passivation of QD surfaces, which we find can be explained using the hard/soft acid–base theory. Importantly, we prepare highly conductive films of PbS, PbSe, and PbTe QDs by directly casting from solution without further chemical treatment, as determined by field-effect transistor measurements. This method allows for precise control over the surfacemore » chemistry, and therefore the transport properties of deposited films. It also permits single-step deposition of films of unprecedented thickness via continuous processing techniques, as we demonstrate by preparing a dense, smooth, 5.3-μm-thick PbSe QD film via doctor-blading. As such, it offers important advantages over laborious layer-by-layer methods for solar cells and photodetectors, while opening the door to new possibilities in ionizing-radiation detectors.« less

Authors:
 [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [2];  [2];  [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. New Mexico State Univ., Las Cruces, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1459632
Report Number(s):
LA-UR-17-22680
Journal ID: ISSN 0002-7863
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 139; Journal Issue: 19; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Lin, Qianglu, Yun, Hyeong Jin, Liu, Wenyong, Song, Hyung -Jun, Makarov, Nikolay S., Isaienko, Oleksandr, Nakotte, Tom, Chen, Gen, Luo, Hongmei, Klimov, Victor Ivanovich, and Pietryga, Jeffrey Michael. Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. United States: N. p., 2017. Web. doi:10.1021/jacs.7b01327.
Lin, Qianglu, Yun, Hyeong Jin, Liu, Wenyong, Song, Hyung -Jun, Makarov, Nikolay S., Isaienko, Oleksandr, Nakotte, Tom, Chen, Gen, Luo, Hongmei, Klimov, Victor Ivanovich, & Pietryga, Jeffrey Michael. Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. United States. https://doi.org/10.1021/jacs.7b01327
Lin, Qianglu, Yun, Hyeong Jin, Liu, Wenyong, Song, Hyung -Jun, Makarov, Nikolay S., Isaienko, Oleksandr, Nakotte, Tom, Chen, Gen, Luo, Hongmei, Klimov, Victor Ivanovich, and Pietryga, Jeffrey Michael. Fri . "Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films". United States. https://doi.org/10.1021/jacs.7b01327. https://www.osti.gov/servlets/purl/1459632.
@article{osti_1459632,
title = {Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films},
author = {Lin, Qianglu and Yun, Hyeong Jin and Liu, Wenyong and Song, Hyung -Jun and Makarov, Nikolay S. and Isaienko, Oleksandr and Nakotte, Tom and Chen, Gen and Luo, Hongmei and Klimov, Victor Ivanovich and Pietryga, Jeffrey Michael},
abstractNote = {Here, the use of semiconductor nanocrystal quantum dots (QDs) in optoelectronic devices typically requires postsynthetic chemical surface treatments to enhance electronic coupling between QDs and allow for efficient charge transport in QD films. Despite their importance in solar cells and infrared (IR) light-emitting diodes and photodetectors, advances in these chemical treatments for lead chalcogenide (PbE; E = S, Se, Te) QDs have lagged behind those of, for instance, II–VI semiconductor QDs. Here, we introduce a method for fast and effective ligand exchange for PbE QDs in solution, resulting in QDs completely passivated by a wide range of small anionic ligands. Due to electrostatic stabilization, these QDs are readily dispersible in polar solvents, in which they form highly concentrated solutions that remain stable for months. QDs of all three Pb chalcogenides retain their photoluminescence, allowing for a detailed study of the effect of the surface ionic double layer on electronic passivation of QD surfaces, which we find can be explained using the hard/soft acid–base theory. Importantly, we prepare highly conductive films of PbS, PbSe, and PbTe QDs by directly casting from solution without further chemical treatment, as determined by field-effect transistor measurements. This method allows for precise control over the surface chemistry, and therefore the transport properties of deposited films. It also permits single-step deposition of films of unprecedented thickness via continuous processing techniques, as we demonstrate by preparing a dense, smooth, 5.3-μm-thick PbSe QD film via doctor-blading. As such, it offers important advantages over laborious layer-by-layer methods for solar cells and photodetectors, while opening the door to new possibilities in ionizing-radiation detectors.},
doi = {10.1021/jacs.7b01327},
journal = {Journal of the American Chemical Society},
number = 19,
volume = 139,
place = {United States},
year = {Fri Apr 21 00:00:00 EDT 2017},
month = {Fri Apr 21 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 90 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Schematic diagram of the ligand exchange process, showing the transition from hydrophobic/steric to electrostatic stabilization. (b) Photographs of the ligand exchange and accompanying phase transfer of PbSe QDs from hexane (top) to DMF phase (bottom) using NH4I. (c) Absorption and emission spectra of PbS (4.0 nm, black),more » PbSe (4.0 nm, red), and PbTe (3.0 nm,blue) QDs before (solid) and after (dash) ligand exchange with LiI.« less

Save / Share:

Works referenced in this record:

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

Ultrasensitive solution-cast quantum dot photodetectors
journal, July 2006

  • Konstantatos, Gerasimos; Howard, Ian; Fischer, Armin
  • Nature, Vol. 442, Issue 7099
  • DOI: 10.1038/nature04855

Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control
journal, May 2012

  • Sun, Liangfeng; Choi, Joshua J.; Stachnik, David
  • Nature Nanotechnology, Vol. 7, Issue 6
  • DOI: 10.1038/nnano.2012.63

Materials interface engineering for solution-processed photovoltaics
journal, August 2012

  • Graetzel, Michael; Janssen, René A. J.; Mitzi, David B.
  • Nature, Vol. 488, Issue 7411
  • DOI: 10.1038/nature11476

An Investigation of Nanocrystalline Semiconductor Assemblies as a Material Basis for Ionizing-Radiation Detectors
journal, June 2009

  • Kim, Geehyun; Huang, James; Hammig, Mark D.
  • IEEE Transactions on Nuclear Science, Vol. 56, Issue 3
  • DOI: 10.1109/TNS.2008.2009447

Charge transport in strongly coupled quantum dot solids
journal, November 2015

  • Kagan, Cherie R.; Murray, Christopher B.
  • Nature Nanotechnology, Vol. 10, Issue 12
  • DOI: 10.1038/nnano.2015.247

Determination of Exciton Diffusion Length by Transient Photoluminescence Quenching and Its Application to Quantum Dot Films
journal, April 2015

  • Lee, Elizabeth M. Y.; Tisdale, William A.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 17
  • DOI: 10.1021/jp512634c

Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber
journal, October 2013

  • Stranks, S. D.; Eperon, G. E.; Grancini, G.
  • Science, Vol. 342, Issue 6156, p. 341-344
  • DOI: 10.1126/science.1243982

Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime
journal, May 2014

  • Zhitomirsky, David; Voznyy, Oleksandr; Levina, Larissa
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4803

New materials for radiation hard semiconductor dectectors
journal, February 2006

  • Sellin, P. J.; Vaitkus, J.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 557, Issue 2
  • DOI: 10.1016/j.nima.2005.10.128

Evidence against existing x-ray-energy response theories for silicon-surface-barrier semiconductor detectors
journal, September 1992


Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol
journal, January 2008

  • Luther, Joseph M.; Law, Matt; Song, Qing
  • ACS Nano, Vol. 2, Issue 2
  • DOI: 10.1021/nn7003348

PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors
journal, October 2005


Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells
journal, April 2015

  • Crisp, Ryan W.; Kroupa, Daniel M.; Marshall, Ashley R.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep09945

Colloidal Nanocrystals with Inorganic Halide, Pseudohalide, and Halometallate Ligands
journal, June 2014

  • Zhang, Hao; Jang, Jaeyoung; Liu, Wenyong
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn502470v

Lead Halide Perovskites and Other Metal Halide Complexes As Inorganic Capping Ligands for Colloidal Nanocrystals
journal, April 2014

  • Dirin, Dmitry N.; Dreyfuss, Sébastien; Bodnarchuk, Maryna I.
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja5006288

Composition-matched molecular "solders" for semiconductors
journal, January 2015


Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands
journal, June 2009


Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2–, HS, Se2–, HSe, Te2–, HTe, TeS32–, OH, and NH2– as Surface Ligands
journal, July 2011

  • Nag, Angshuman; Kovalenko, Maksym V.; Lee, Jong-Soo
  • Journal of the American Chemical Society, Vol. 133, Issue 27, p. 10612-10620
  • DOI: 10.1021/ja2029415

Solution-Processed Transistors Using Colloidal Nanocrystals with Composition-Matched Molecular “Solders”: Approaching Single Crystal Mobility
journal, September 2015


Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine
journal, November 2012

  • Bae, Wan Ki; Joo, Jin; Padilha, Lazaro A.
  • Journal of the American Chemical Society, Vol. 134, Issue 49
  • DOI: 10.1021/ja309783v

Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling
journal, October 2015


One-Step Deposition of Photovoltaic Layers Using Iodide Terminated PbS Quantum Dots
journal, November 2014

  • Kim, Sungwoo; Noh, Jaehong; Choi, Hyekyoung
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 22
  • DOI: 10.1021/jz502092x

Stable Dispersion of Iodide-Capped PbSe Quantum Dots for High-Performance Low-Temperature Processed Electronics and Optoelectronics
journal, June 2015


PbSe Quantum Dot Field-Effect Transistors with Air-Stable Electron Mobilities above 7 cm 2 V –1 s –1
journal, March 2013

  • Liu, Yao; Tolentino, Jason; Gibbs, Markelle
  • Nano Letters, Vol. 13, Issue 4
  • DOI: 10.1021/nl304753n

Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange
journal, May 2014

  • Brown, Patrick R.; Kim, Donghun; Lunt, Richard R.
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn500897c

Absolute hardness: companion parameter to absolute electronegativity
journal, December 1983

  • Parr, Robert G.; Pearson, Ralph G.
  • Journal of the American Chemical Society, Vol. 105, Issue 26
  • DOI: 10.1021/ja00364a005

ZnO Nanowire Transistors
journal, January 2005

  • Goldberger, Josh; Sirbuly, Donald J.; Law, Matt
  • The Journal of Physical Chemistry B, Vol. 109, Issue 1
  • DOI: 10.1021/jp0452599

Size- and Temperature-Dependent Charge Transport in PbSe Nanocrystal Thin Films
journal, September 2011

  • Kang, Moon Sung; Sahu, Ayaskanta; Norris, David J.
  • Nano Letters, Vol. 11, Issue 9
  • DOI: 10.1021/nl2020153

Stoichiometric Control of Lead Chalcogenide Nanocrystal Solids to Enhance Their Electronic and Optoelectronic Device Performance
journal, February 2013

  • Oh, Soong Ju; Berry, Nathaniel E.; Choi, Ji-Hyuk
  • ACS Nano, Vol. 7, Issue 3
  • DOI: 10.1021/nn3057356

Absolute Photoluminescence Quantum Yields of IR-26 Dye, PbS, and PbSe Quantum Dots
journal, July 2010

  • Semonin, Octavi E.; Johnson, Justin C.; Luther, Joseph M.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 16
  • DOI: 10.1021/jz100830r

Multiexciton Dynamics in Infrared-Emitting Colloidal Nanostructures Probed by a Superconducting Nanowire Single-Photon Detector
journal, October 2012

  • Sandberg, Richard L.; Padilha, Lazaro A.; Qazilbash, Muhammad M.
  • ACS Nano, Vol. 6, Issue 11
  • DOI: 10.1021/nn3043226

Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots with in Situ Halide Passivation for Quantum Dot Solar Cells
journal, December 2013

  • Zhang, Jianbing; Gao, Jianbo; Miller, Elisa M.
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405236k

Designing High-Performance PbS and PbSe Nanocrystal Electronic Devices through Stepwise, Post-Synthesis, Colloidal Atomic Layer Deposition
journal, February 2014

  • Oh, Soong Ju; Berry, Nathaniel E.; Choi, Ji-Hyuk
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404818z

Dielectric constants of liquid formamide, N-methylformamide and dimethylformamide via molecular Ornstein-Zernike theory
journal, July 1997


Nanocrystal Inks without Ligands: Stable Colloids of Bare Germanium Nanocrystals
journal, May 2011

  • Holman, Zachary C.; Kortshagen, Uwe R.
  • Nano Letters, Vol. 11, Issue 5
  • DOI: 10.1021/nl200774y

Critical compilation of scales of solvent parameters. Part I. Pure, non-hydrogen bond donor solvents
journal, January 1999


Ultrathin Gold Nanowires Can Be Obtained by Reducing Polymeric Strands of Oleylamine−AuCl Complexes Formed via Aurophilic Interaction
journal, July 2008

  • Lu, Xianmao; Yavuz, Mustafa S.; Tuan, Hsing-Yu
  • Journal of the American Chemical Society, Vol. 130, Issue 28
  • DOI: 10.1021/ja803343m

Effect of Metal Ions on Photoluminescence, Charge Transport, Magnetic and Catalytic Properties of All-Inorganic Colloidal Nanocrystals and Nanocrystal Solids
journal, August 2012

  • Nag, Angshuman; Chung, Dae Sung; Dolzhnikov, Dmitriy S.
  • Journal of the American Chemical Society, Vol. 134, Issue 33
  • DOI: 10.1021/ja301285x

The Electrical Double Layer and the Stability of Lyophobic Colloids.
journal, June 1935


Hard and Soft Acids and Bases
journal, November 1963

  • Pearson, Ralph G.
  • Journal of the American Chemical Society, Vol. 85, Issue 22
  • DOI: 10.1021/ja00905a001

Thiocyanate-Capped Nanocrystal Colloids: Vibrational Reporter of Surface Chemistry and Solution-Based Route to Enhanced Coupling in Nanocrystal Solids
journal, October 2011

  • Fafarman, Aaron T.; Koh, Weon-kyu; Diroll, Benjamin T.
  • Journal of the American Chemical Society, Vol. 133, Issue 39
  • DOI: 10.1021/ja206303g

Utilizing the Lability of Lead Selenide to Produce Heterostructured Nanocrystals with Bright, Stable Infrared Emission
journal, April 2008

  • Pietryga, Jeffrey M.; Werder, Donald J.; Williams, Darrick J.
  • Journal of the American Chemical Society, Vol. 130, Issue 14
  • DOI: 10.1021/ja710437r

Ultrastable PbSe Nanocrystal Quantum Dots via in Situ Formation of Atomically Thin Halide Adlayers on PbSe(100)
journal, June 2014

  • Woo, Ju Young; Ko, Jae-Hyeon; Song, Jung Hoon
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja503957r

Air-Stable and Efficient PbSe Quantum-Dot Solar Cells Based upon ZnSe to PbSe Cation-Exchanged Quantum Dots
journal, July 2015


Electrical Transport and Grain Growth in Solution-Cast, Chloride-Terminated Cadmium Selenide Nanocrystal Thin Films
journal, June 2014

  • Norman, Zachariah M.; Anderson, Nicholas C.; Owen, Jonathan S.
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn502829s

Carrier Multiplication in Semiconductor Nanocrystals: Influence of Size, Shape, and Composition
journal, March 2013

  • Padilha, Lazaro A.; Stewart, John T.; Sandberg, Richard L.
  • Accounts of Chemical Research, Vol. 46, Issue 6
  • DOI: 10.1021/ar300228x

Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell
journal, December 2011


Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%
journal, November 2015


Self-Assembly of PbTe Quantum Dots into Nanocrystal Superlattices and Glassy Films
journal, March 2006

  • Urban, Jeffrey J.; Talapin, Dmitri V.; Shevchenko, Elena V.
  • Journal of the American Chemical Society, Vol. 128, Issue 10
  • DOI: 10.1021/ja058269b

Synthesis of Monodisperse PbSe Nanorods: A Case for Oriented Attachment
journal, March 2010

  • Koh, Weon-kyu; Bartnik, Adam C.; Wise, Frank W.
  • Journal of the American Chemical Society, Vol. 132, Issue 11
  • DOI: 10.1021/ja9105682

Stoichiometry Control in Quantum Dots: A Viable Analog to Impurity Doping of Bulk Materials
journal, March 2013

  • Luther, Joseph M.; Pietryga, Jeffrey M.
  • ACS Nano, Vol. 7, Issue 3
  • DOI: 10.1021/nn401100n

Works referencing / citing this record:

Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices
journal, January 2020

  • Zhang, Yaohong; Wu, Guohua; Liu, Feng
  • Chemical Society Reviews, Vol. 49, Issue 1
  • DOI: 10.1039/c9cs00560a

Enhanced mobility in PbS quantum dot films via PbSe quantum dot mixing for optoelectronic applications
journal, January 2019

  • Hu, Long; Huang, Shujuan; Patterson, Robert
  • Journal of Materials Chemistry C, Vol. 7, Issue 15
  • DOI: 10.1039/c8tc06495d

Pressure-enhanced electronic coupling of highly passivated quantum dot films to improve photovoltaic performance
journal, November 2019

  • Wang, Yinglin; An, Meiqi; Jia, Yuwen
  • Applied Physics Letters, Vol. 115, Issue 19
  • DOI: 10.1063/1.5110749

Photophysical and electronic properties of bismuth-perovskite shelled lead sulfide quantum dots
journal, December 2019

  • Abdu-Aguye, Mustapha; Bederak, Dmytro; Kahmann, Simon
  • The Journal of Chemical Physics, Vol. 151, Issue 21
  • DOI: 10.1063/1.5128885

Interfacial N→Sb Nonbonded Interaction Enhances the Photoelectronic Performance of PVP-Capped Sb 2 S 3 Amorphous Colloids
journal, August 2018


Highly photoluminescent, dense solid films from organic-capped CH 3 NH 3 PbBr 3 perovskite colloids
journal, January 2018

  • González-Carrero, Soranyel; Martínez-Sarti, Laura; Sessolo, Michele
  • Journal of Materials Chemistry C, Vol. 6, Issue 25
  • DOI: 10.1039/c8tc01344f

PbSe Quantum Dot Passivated Via Mixed Halide Perovskite Nanocrystals for Solar Cells With Over 9% Efficiency
journal, October 2018


Lead Selenide (PbSe) Colloidal Quantum Dot Solar Cells with >10% Efficiency
journal, June 2019


PbE (E = S, Se) Colloidal Quantum Dot-Layered 2D Material Hybrid Photodetectors
journal, January 2020

  • Nakotte, Tom; Luo, Hongmei; Pietryga, Jeff
  • Nanomaterials, Vol. 10, Issue 1
  • DOI: 10.3390/nano10010172

In Situ Fabricated Perovskite Nanocrystals: A Revolution in Optical Materials
journal, June 2018

  • Chang, Shuai; Bai, Zelong; Zhong, Haizheng
  • Advanced Optical Materials, Vol. 6, Issue 18
  • DOI: 10.1002/adom.201800380

Giant Photo‐Induced Current Enhancement in a Core–Shell‐Type Quantum‐Dot Thin Film
journal, January 2020

  • Shimizu, Sunao; Matsuki, Keiichiro; Miwa, Kazumoto
  • Advanced Electronic Materials, Vol. 6, Issue 3
  • DOI: 10.1002/aelm.201901069

Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2
journal, September 2018


Enhancing Quantum Dot Solar Cells Stability with a Semiconducting Single‐Walled Carbon Nanotubes Interlayer Below the Top Anode
journal, October 2018

  • Salazar‐Rios, Jorge Mario; Sukharevska, Nataliia; Speirs, Mark Jonathan
  • Advanced Materials Interfaces, Vol. 5, Issue 22
  • DOI: 10.1002/admi.201801155

Colloidal PbS nanoplatelets synthesized via cation exchange for electronic applications
journal, January 2019

  • Sonntag, Luisa; Shamraienko, Volodymyr; Fan, Xuelin
  • Nanoscale, Vol. 11, Issue 41
  • DOI: 10.1039/c9nr02437a

Different Modes of Anion Response Cause Circulatory Phase Transfer of a Coordination Cage with Controlled Directionality
journal, September 2019

  • Mihara, Nozomi; Ronson, Tanya K.; Nitschke, Jonathan R.
  • Angewandte Chemie International Edition, Vol. 58, Issue 36
  • DOI: 10.1002/anie.201906644

Different Modes of Anion Response Cause Circulatory Phase Transfer of a Coordination Cage with Controlled Directionality
journal, July 2019

  • Mihara, Nozomi; Ronson, Tanya K.; Nitschke, Jonathan R.
  • Angewandte Chemie, Vol. 131, Issue 36
  • DOI: 10.1002/ange.201906644

Enhancing Quantum Dot Solar Cells Stability with a Semiconducting Single-Walled Carbon Nanotubes Interlayer Below the Top Anode
text, January 2018


Different Modes of Anion Response Cause Circulatory Phase Transfer of a Coordination Cage with Controlled Directionality
journal, September 2019

  • Mihara, Nozomi; Ronson, Tanya K.; Nitschke, Jonathan R.
  • Angewandte Chemie International Edition, Vol. 58, Issue 36
  • DOI: 10.1002/anie.201906644

Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal
journal, January 2018

  • Balazs, Daniel M.; Rizkia, Nisrina; Fang, Hong-Hua
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 6
  • DOI: 10.1021/acsami.7b16882

Comparing Halide Ligands in PbS Colloidal Quantum Dots for Field-Effect Transistors and Solar Cells
journal, November 2018

  • Bederak, Dmytro; Balazs, Daniel M.; Sukharevska, Nataliia V.
  • ACS Applied Nano Materials, Vol. 1, Issue 12
  • DOI: 10.1021/acsanm.8b01696

Surface-Modified Substrates for Quantum Dot Inks in Printed Electronics
journal, February 2019


Ligands as a universal molecular toolkit in synthesis and assembly of semiconductor nanocrystals
journal, January 2020

  • Lee, Hyeonjun; Yoon, Da-Eun; Koh, Sungjun
  • Chemical Science, Vol. 11, Issue 9
  • DOI: 10.1039/c9sc05200c

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.