skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells

Abstract

We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI 2, PbCl 2, CdI 2, or CdCl 2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI 2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl- with I-. The treatment protocol results in PbS QD films exhibiting a deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI 2 with power conversion efficiencies above 7%.

Authors:
 [1];  [2];  [2];  [3];  [4];  [3];  [3]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  4. National Renewable Energy Lab. (NREL), Golden, CO (United States); Huazhong Univ. of Science and Technology, Hubei (China)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1220641
Report Number(s):
NREL/JA-5900-63170
Journal ID: ISSN 2045-2322
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 5; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY; quantum dots (QD); solar cells; nanocrystals; ligand exchange

Citation Formats

Crisp, R. W., Kroupa, D. M., Marshall, A. R., Miller, E. M., Zhang, J., Beard, M. C., and Luther, J. M. Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells. United States: N. p., 2015. Web. doi:10.1038/srep09945.
Crisp, R. W., Kroupa, D. M., Marshall, A. R., Miller, E. M., Zhang, J., Beard, M. C., & Luther, J. M. Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells. United States. doi:10.1038/srep09945.
Crisp, R. W., Kroupa, D. M., Marshall, A. R., Miller, E. M., Zhang, J., Beard, M. C., and Luther, J. M. Fri . "Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells". United States. doi:10.1038/srep09945. https://www.osti.gov/servlets/purl/1220641.
@article{osti_1220641,
title = {Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells},
author = {Crisp, R. W. and Kroupa, D. M. and Marshall, A. R. and Miller, E. M. and Zhang, J. and Beard, M. C. and Luther, J. M.},
abstractNote = {We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI2, PbCl2, CdI2, or CdCl2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl- with I-. The treatment protocol results in PbS QD films exhibiting a deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI2 with power conversion efficiencies above 7%.},
doi = {10.1038/srep09945},
journal = {Scientific Reports},
number = ,
volume = 5,
place = {United States},
year = {2015},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 68 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hybrid passivated colloidal quantum dot solids
journal, July 2012

  • Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd
  • Nature Nanotechnology, Vol. 7, Issue 9
  • DOI: 10.1038/nnano.2012.127

Colloidal-quantum-dot photovoltaics using atomic-ligand passivation
journal, September 2011

  • Tang, Jiang; Kemp, Kyle W.; Hoogland, Sjoerd
  • Nature Materials, Vol. 10, Issue 10
  • DOI: 10.1038/nmat3118

Solar Cells Based on Inks of n-Type Colloidal Quantum Dots
journal, September 2014

  • Ning, Zhijun; Dong, Haopeng; Zhang, Qiong
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn503569p

Quantum dots for next-generation photovoltaics
journal, November 2012


Photoemission Spectroscopy of Tethered CdSe Nanocrystals: Shifts in Ionization Potential and Local Vacuum Level As a Function of Nanocrystal Capping Ligand
journal, March 2010

  • Munro, Andrea M.; Zacher, Brian; Graham, Amy
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 3
  • DOI: 10.1021/am900834y

Nanocrystal Grain Growth and Device Architectures for High-Efficiency CdTe Ink-Based Photovoltaics
journal, August 2014

  • Crisp, Ryan W.; Panthani, Matthew G.; Rance, William L.
  • ACS Nano, Vol. 8, Issue 9
  • DOI: 10.1021/nn502442g

Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange
journal, May 2014

  • Brown, Patrick R.; Kim, Donghun; Lunt, Richard R.
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn500897c

Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol
journal, January 2008

  • Luther, Joseph M.; Law, Matt; Song, Qing
  • ACS Nano, Vol. 2, Issue 2
  • DOI: 10.1021/nn7003348

PbSe Quantum Dot Solar Cells with More than 6% Efficiency Fabricated in Ambient Atmosphere
journal, September 2014

  • Zhang, Jianbing; Gao, Jianbo; Church, Carena P.
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503085v

N-Type Colloidal-Quantum-Dot Solids for Photovoltaics
journal, September 2012

  • Zhitomirsky, David; Furukawa, Melissa; Tang, Jiang
  • Advanced Materials, Vol. 24, Issue 46, p. 6181-6185
  • DOI: 10.1002/adma.201202825

Enhanced Mobility-Lifetime Products in PbS Colloidal Quantum Dot Photovoltaics
journal, December 2011

  • Jeong, Kwang S.; Tang, Jiang; Liu, Huan
  • ACS Nano, Vol. 6, Issue 1
  • DOI: 10.1021/nn2039164

Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime
journal, May 2014

  • Zhitomirsky, David; Voznyy, Oleksandr; Levina, Larissa
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4803

Stoichiometric Control of Lead Chalcogenide Nanocrystal Solids to Enhance Their Electronic and Optoelectronic Device Performance
journal, February 2013

  • Oh, Soong Ju; Berry, Nathaniel E.; Choi, Ji-Hyuk
  • ACS Nano, Vol. 7, Issue 3
  • DOI: 10.1021/nn3057356

Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell
journal, December 2011


A Generic Method for Rational Scalable Synthesis of Monodisperse Metal Sulfide Nanocrystals
journal, October 2012

  • Zhang, Haitao; Hyun, Byung-Ryool; Wise, Frank W.
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl303207s

Thiocyanate-Capped Nanocrystal Colloids: Vibrational Reporter of Surface Chemistry and Solution-Based Route to Enhanced Coupling in Nanocrystal Solids
journal, October 2011

  • Fafarman, Aaron T.; Koh, Weon-kyu; Diroll, Benjamin T.
  • Journal of the American Chemical Society, Vol. 133, Issue 39
  • DOI: 10.1021/ja206303g

Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS)
journal, June 2013


n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells
journal, August 2011

  • Gao, Jianbo; Perkins, Craig L.; Luther, Joseph M.
  • Nano Letters, Vol. 11, Issue 8, p. 3263-3266
  • DOI: 10.1021/nl2015729

The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices
journal, September 2013

  • Kramer, Illan J.; Sargent, Edward H.
  • Chemical Reviews, Vol. 114, Issue 1
  • DOI: 10.1021/cr400299t

Size-Dependent Valence and Conduction Band-Edge Energies of Semiconductor Nanocrystals
journal, June 2011

  • Jasieniak, Jacek; Califano, Marco; Watkins, Scott E.
  • ACS Nano, Vol. 5, Issue 7
  • DOI: 10.1021/nn201681s

Stoichiometry Control in Quantum Dots: A Viable Analog to Impurity Doping of Bulk Materials
journal, March 2013

  • Luther, Joseph M.; Pietryga, Jeffrey M.
  • ACS Nano, Vol. 7, Issue 3
  • DOI: 10.1021/nn401100n

Colloidal Nanocrystals with Inorganic Halide, Pseudohalide, and Halometallate Ligands
journal, June 2014

  • Zhang, Hao; Jang, Jaeyoung; Liu, Wenyong
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn502470v

Improved performance and stability in quantum dot solar cells through band alignment engineering
journal, May 2014

  • Chuang, Chia-Hao M.; Brown, Patrick R.; Bulović, Vladimir
  • Nature Materials, Vol. 13, Issue 8, p. 796-801
  • DOI: 10.1038/nmat3984

Surfactant-assisted growth of CdS thin films for photovoltaic applications
journal, May 2006

  • Perkins, Craig L.; Hasoon, Falah S.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 24, Issue 3
  • DOI: 10.1116/1.2194929

Designing High-Performance PbS and PbSe Nanocrystal Electronic Devices through Stepwise, Post-Synthesis, Colloidal Atomic Layer Deposition
journal, February 2014

  • Oh, Soong Ju; Berry, Nathaniel E.; Choi, Ji-Hyuk
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404818z

Steric-Hindrance-Driven Shape Transition in PbS Quantum Dots: Understanding Size-Dependent Stability
journal, March 2013

  • Choi, Hyekyoung; Ko, Jae-Hyeon; Kim, Yong-Hyun
  • Journal of the American Chemical Society, Vol. 135, Issue 14
  • DOI: 10.1021/ja400948t

Lead Halide Perovskites and Other Metal Halide Complexes As Inorganic Capping Ligands for Colloidal Nanocrystals
journal, April 2014

  • Dirin, Dmitry N.; Dreyfuss, Sébastien; Bodnarchuk, Maryna I.
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja5006288

Utilizing the Lability of Lead Selenide to Produce Heterostructured Nanocrystals with Bright, Stable Infrared Emission
journal, April 2008

  • Pietryga, Jeffrey M.; Werder, Donald J.; Williams, Darrick J.
  • Journal of the American Chemical Society, Vol. 130, Issue 14
  • DOI: 10.1021/ja710437r

Confined-but-Connected Quantum Solids via Controlled Ligand Displacement
journal, June 2013

  • Baumgardner, William J.; Whitham, Kevin; Hanrath, Tobias
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl401298s

Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by x-ray photoelectron spectroscopy
journal, August 1983


Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine
journal, November 2012

  • Bae, Wan Ki; Joo, Jin; Padilha, Lazaro A.
  • Journal of the American Chemical Society, Vol. 134, Issue 49
  • DOI: 10.1021/ja309783v

Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots with in Situ Halide Passivation for Quantum Dot Solar Cells
journal, December 2013

  • Zhang, Jianbing; Gao, Jianbo; Miller, Elisa M.
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405236k

    Works referencing / citing this record:

    Water-mediated green synthesis of PbS quantum dot and its glutathione and biotin conjugates for non-invasive live cell imaging
    journal, March 2018

    • Vijaya Bharathi, M.; Maiti, Santanu; Sarkar, Bidisha
    • Royal Society Open Science, Vol. 5, Issue 3
    • DOI: 10.1098/rsos.171614

    Nahinfrarotaktive Bleichalkogenid‐Quantenpunkte: Herstellung, postsynthetischer Ligandenaustausch und Anwendungen in Solarzellen
    journal, February 2019

    • Shrestha, Aabhash; Batmunkh, Munkhbayar; Tricoli, Antonio
    • Angewandte Chemie, Vol. 131, Issue 16
    • DOI: 10.1002/ange.201804053

    High efficiency perovskite quantum dot solar cells with charge separating heterostructure
    journal, June 2019