skip to main content

DOE PAGESDOE PAGES

Title: Material point methods applied to one-dimensional shock waves and dual domain material point method with sub-points

Here, using a simple one-dimensional shock problem as an example, the present paper investigates numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the dual domain material point (DDMP) method. For a weak isothermal shock of ideal gas, the MPM cannot be used with accuracy. With a small number of particles per cell, GIMP and CPDI produce reasonable results. However, as the number of particles increases the methods fail to converge and produce pressure spikes. The DDMP method behaves in an opposite way. With a small number of particles per cell, DDMP results are unsatisfactory. As the number of particles increases, the DDMP results converge to correct solutions, but the large number of particles needed for convergence makes the method very expensive to use in these types of shock wave problems in two- or three-dimensional cases. The cause for producing the unsatisfactory DDMP results is identified. A simple improvement to the method is introduced by using sub-points. With this improvement, the DDMP method produces high quality numerical solutions with a very small number of particles. Although in the present paper, the numerical examples are one-dimensional,more » all derivations are for multidimensional problems. With the technique of approximately tracking particle domains of CPDI, the extension of this sub-point method to multidimensional problems is straightforward. Finally, this new method preserves the conservation properties of the DDMP method, which conserves mass and momentum exactly and conserves energy to the second order in both spatial and temporal discretizations.« less
Authors:
 [1] ; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Report Number(s):
LA-UR-15-29121
Journal ID: ISSN 0021-9991
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Journal of Computational Physics
Additional Journal Information:
Journal Volume: 325; Journal Issue: C; Journal ID: ISSN 0021-9991
Publisher:
Elsevier
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 97 MATHEMATICS AND COMPUTING; Material point methods; Shock waves
OSTI Identifier:
1457270
Alternate Identifier(s):
OSTI ID: 1359307