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ABSTRACT

Multi-scale calculation based on dual domain material point method combined with

molecular dynamics

by

Tilak R. Dhakal

This dissertation combines the dual domain material point method (DDMP) with

molecular dynamics (MD) in an attempt to create a multi-scale numerical method

to simulate materials undergoing large deformations with high strain rates. In these

types of problems, the material is often in a thermodynamically non-equilibrium state,

and conventional constitutive relations are often not available. In this method, the

closure quantities, such as stress, at each material point are calculated from a MD

simulation of a group of atoms surrounding the material point. Rather than restricting

the multi-scale simulation in a small spatial region, such as phase interfaces, or crack

tips, this multi-scale method can be used to consider non-equilibrium thermodynamic

effects in a macroscopic domain. This method takes advantage that the material

points only communicate with mesh nodes, not among themselves; therefore MD

simulations for material points can be performed independently in parallel.

First, using a one-dimensional shock problem as an example, the numerical prop-

erties of the original material point method (MPM), the generalized interpolation

material point (GIMP) method, the convected particle domain interpolation (CPDI)

method, and the DDMP method are investigated. Among these methods, only the

DDMP method converges as the number of particles increases, but the large number



of particles needed for convergence makes the method very expensive especially in

our multi-scale method where we calculate stress in each material point using MD

simulation. To improve DDMP, the sub-point method is introduced in this disser-

tation, which provides high quality numerical solutions with a very small number of

particles.

The multi-scale method based on DDMP with sub-points is successfully imple-

mented for a one dimensional problem of shock wave propagation in a cerium crystal.

The MD simulation to calculate stress in each material point is performed in GPU

using CUDA to accelerate the computation. The numerical properties of the multi-

scale method are investigated as well as the results from this multi-scale calculation

are compared with direct MD simulation results to demonstrate the feasibility of the

method. Also, the multi-scale method is applied for a two dimensional problem of jet

formation around copper notch under a strong impact.
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Chapter 1

Introduction

The equation of state or constitutive relation of a material is often obtained based

on the assumption of thermodynamic equilibrium. As a consequence of this assump-

tion, the equation of state can only be applied to the problems in which the time

scale of the material deformation, defined by the inverse of the characteristic strain

rate, is significantly larger than the time scale for the molecules in the material to

relax to their thermodynamic equilibrium state after an external perturbation. For

problems with a smaller ratio between the problem time scale and the relaxation time

scale of the material, the equation of state cannot be used. These types of physical

problems are the main focus of this dissertation. To address such problems involv-

ing materials undergoing extreme deformation, we combine dual domain material

point method (DDMP) and molecular dynamics (MD) to build a novel multi-scale

numerical method.

1.1 Multi-scale modeling: Review

Almost all the problems we encounter in science and engineering are multi-scale in

nature. Materials are made up of atoms in microscopic level, and we characterize

the materials in continuum level which are several order larger than the atomistic
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level. Also the atomistic level processes occur in the order of femtoseconds whereas

the time scale of physical problems occur in much slower pace. In many cases, the

continuum characterization of material is sufficient to describe the material behavior.

The effects of microscopic processes to the macroscopic processes are reflected in terms

of constitutive relations or equations of state. There also exist many other problems,

which are directly related to atomistic level processes, such as crack propagation

in solids. Atomistic level calculation such as molecular dynamics can describe such

phenomena very accurately, but it is impractical to perform such calculations in a

domain of a material of engineering interest. Multi-scale methods which couple the

atomistic level calculation with the continuum description of the material has become

a popular choice to accurately and efficiently model such problems.

Multi-scale method was first originated in US DOE national labs to replace under-

ground nuclear tests with simulation based experiments in mid 1980s [1]. Many of the

early multi-scale methods are based on coarse-graining the energy [2]. One example is

the quasicontinuum method [3] where a coarse grained hamiltonian is formed and the

hamiltonian is minimized to find the equilibrium state. The quasicontinuum method

is successfully applied to study the quasistatic structure of solids at zero temperature

[4]. Coarse-grained molecular dynamics is another popular method involving coarse-

grained hamiltonian [5]. Besides coarse-grained methods, the domain decomposition

method [6] is another popular multi-scale method. In this method, the computa-

tional domain is decomposed into atomistic regions and continuum regions, and some
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scale-bridging method is used at the interface. For modeling fluids, the atomistic and

continuum domains can overlap. The overlapped domain can be used to validate the

model by comparing the results from microscopic and macroscopic calculation. For

modeling for solids, the two domains usually do not overlap.

The multi-scale modeling used in this dissertation is related to so called hetero-

geneous multi-scale method (HMM) [7]. The general strategy of HMM method is to

start with a macroscopic solver, with missing macroscopic data, such as constitutive

relation, calculated using microscopic calculation. Unlike in domain decomposition

method, in HMM strategy, the macroscale solver is used over the whole domain. The

HMM method can be applied to two different kind of problems, type A and type B

problems. In type A problems, there are isolated defects, such as cracks or disloca-

tions in solids, where macroscale solver requires coupling with microscale calculation

near the defects to accurately model the material. Away from the defects, contin-

uum model can be used. In type B problems, the constitutive relations to drive the

macroscale solver are missing. Microscopic calculations are performed to obtain the

closure quantities, such as stress. The multi-scale method studied in this dissertation

can be categorized as type B HMM method, where we use molecular dynamics sim-

ulation to obtain stress bypassing the need for a constitutive relation for materials

undergoing extreme deformation in thermodynamically non-equilibrium states.
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1.2 Large material deformation under thermodynamic non-

equilibrium

Since the time scale of the material deformation of concern in this dissertation is

comparable or even smaller than the thermodynamic relaxation time, the material

response at a given external disturbance depends on the micro structures of the

material at that time, which depends on the history of the material. Therefore,

the material behavior is generally history dependent for these types of problems.

Furthermore, such high rates of material deformations often involve significant forces,

for instance, in the cases of hypervelocity impacts. Significant material deformations

are common in these cases.

To numerically simulate these types of problems at the macroscopic level, on the

theoretical front, one needs a set of continuum scale equations with a method to cal-

culate the closure quantities accurately representing the micro structure and history

effects. On the numerical front, one needs a numerical method capable of accurately

tracking material deformation history in cases of large material deformation.

The continuum scale equations can be derived from the Liouville equation us-

ing ensemble average for fairly general cases [8, 9]. The closure quantities, such as

pressure, stress, and heat flux, are directly related to microscopic interactions among

molecules and atoms. In this dissertation, we use these relations to calculate the nec-

essary closure quantities directly from molecular dynamics (MD) simulations. Such

closure quantities are used in continuum calculations to advance the macroscopic
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quantities. For thermodynamically equilibrium systems in the limit of Continuum

Mechanics, we show that such calculated stress is consistent with the traditional

concept. The method presented in the current paper is in the same philosophy of

the heterogeneous multiscale method (HMM) [10, 11, 12]. For selected regions in a

macroscopic domain, lower length scale simulations are performed in synchrony with

the macroscopic continuum level calculation. These lower length scale simulations

are constrained by the macroscopic information passed to them. Closure quantities,

such as stress or heat flux, calculated from these lower length scale systems are passed

to the continuum level calculation to advance the macroscopic state. In this thesis

work we emphasize the simulation method for history dependent systems undergoing

large macroscopic deformations. Frequent reinitialization and time averaging are not

allowed. While the non-linear terms are neglected in [10] and the work is limited to

small material deformation, the Lagrangian coordinate system is capable of track-

ing material deformation history, which is an advantage of a Lagrangian method.

The main disadvantage of a pure Lagrangian method, such as the Lagrangian finite

element method, appears in problems involving large material deformation, where

elements are often severely distorted and even entangled leading to loss of accuracy

and eventual failure of the calculation. In this dissertation, we use the dual domain

material point (DDMP) method to avoid this numerical difficulty. For the fluid dy-

namics problems studied in [11], the simulated molecular dynamics systems are fixed

in the spatial locations intended for history independent materials, such as Newtonian
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fluids, based on the pure Eulerian description. Unless special treatments, such as in

[13, 14], are used, Eulerian methods often lead to significant numerical diffusion of

history dependent variables. Rather than proposing another multiscale computation

philosophy or a method to perform MD simulations, the main purpose of this work

is to show that the general strategy of HMM can be efficiently implemented with the

dual domain material point (DDMP) method for thermodynamically nonequilibrium

or history dependent systems undergoing large material deformation by taking ad-

vantage of the simultaneous use of Lagrangian particles and Eulerian meshes in the

method.

The Lagrangian particles, also called material points, are used to track the his-

tory of the material deformation. These particles can be regarded as pieces of the

material experiencing the history. The Eulerian mesh is used to perform numerical

analysis, such as taking spatial derivatives. Since the information about material

history is carried by the Lagrangian particles, numerical diffusion for the history de-

pendent quantities is avoided. Furthermore, because the mesh is Eulerian, it remains

unchanged in cases of large material deformations, thereby avoiding the mesh dis-

tortion difficulty suffered by a pure Lagrangian method. In the DDMP method, the

closure quantities, such as the stress, are needed only at material points following

the motion of the material. The numerical method does not require direct molec-

ular dynamics simulation of the entire macroscopic computational domain. Direct

molecular dynamics simulations are only performed in small representative domains
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around the material points. These simulations are driven by the continuum level

DDMP calculation by imposing appropriate constraints to the molecular dynamics

systems. The closure quantities calculated from these molecular systems are used to

drive the macroscopic DDMP calculation. Such intimate communications between

the macroscopic scale calculation and the microscopic scale simulations are unique

for these types of multiscale calculations and need to be studied carefully to ensure

physical consistency of the results.

In the DDMP method, material points only communicate with mesh nodes, and

not directly among themselves. Therefore, there is no need to form neighbor lists of

the particles. This feature of the numerical method is very advantageous for parallel

computation, especially for heterogeneous computers, such as CPU-GPU combined

platforms. In this dissertation, we take advantage of this feature and demonstrate

the feasibility of such multiscale calculations.

1.3 Continuum equation solution methods

Since its first introduction [15, 16], the material point method has been used in many

problems involving large material deformations [17, 18, 19, 20, 21, 22] in which a tradi-

tional finite element method encounters difficulties due to mesh or element distortion.

The material point method is similar to finite element method. Both of them seek

approximate weak solutions to the partial differential equations but there are two

significant differences that result in different numerical properties of the methods.
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The first difference is that the finite element method is a pure Lagrangian method in

which elements move and deform with the material, while the material point method

uses an arbitrary Eulerian mesh, which may stay fixed during a material motion and

avoids the mesh or element distortion in cases of large material deformation. The La-

grangian capability of the material point method resides in its use of material points

to carry history dependent quantities.

The second difference is the numerical integration method used to approximate

the inner product of two functions. In the finite element method the integration

for the internal force calculation is often calculated using the Gauss method with

Gauss integration points specified at given logical coordinates of the element for the

purpose of accuracy. In the material point method, the material points are used not

only to carry important field quantities, such as stress and damage of the material,

but also used as integration points. Unlike in the finite element method, we do not

have control on locations of these material points. In the material point method,

the numerical integration in the internal force calculation is approximated by a low

accuracy Riemann sum.

Comparing to the finite element method, the freedom or advantage of the ma-

terial point method is gained at the cost of numerical accuracy and smoothness in

the internal force calculation. One problem caused by this low accuracy integration

is now the well known cell crossing noise [23] of the method. The generalized inter-

polation material point method (GIMP) reduces this noise. In this version of the
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material point method, the concept of particle domain is introduced to perform inte-

grations in the calculation of the nodal mass and the internal force. The smoothing

effect is provided by averaging or integrating over the particle domain. To conserve

momentum, the GIMP method requires that the particle domains cover the entire

computational domain without overlap. This requirement is also called the partition

of unity, since this is equivalent to requiring that the sum of the particle character-

istic functions equals to unity everywhere in the computational domain. It is rather

straightforward to satisfy this requirement in one-dimensional problems. For two-

or three-dimensional problems with a significant material deformation, it is nearly

impossible to numerically satisfy this requirement. This is similar to the difficulty

encountered by the finite element methods due to element distortion. To alleviate

this difficulty, there are two approximate versions of the GIMP method, uGIMP and

cpGIMP [23]. In uGIMP, the partition of unity requirement is simply ignored, and

the particle domains are assumed unchanged during the material deformation; there-

fore it can only be applied to problems with small material deformations. In cpGIMP,

the particle domains are assumed to be rectangles all the time. Only deformations

caused by the diagonal components of the deformation gradient are considered in the

change of the particle domain. Therefore, the method cannot be used for problems

with strong shear or rotation.

To improve this situation, another version of the material point method, called

the convected particle domain interpolation (CPDI) [24] method, allows significant



10

rotation and shear deformation by using parallelograms (in two-dimension) and par-

allelepipeds (in three-dimension) to cover the computational domain. The parallel-

ograms or parallelepipeds can move, rotate, and deform according to the velocity

and the velocity gradient at the center. In this way, the CPDI method provides a

local linear approximation to the deformation field in the calculation of the particle

domains, but gaps and overlaps still happen among the deformed parallelograms and

parallelepipeds.

Both the GIMP and CPDI methods rely on averages over particle domains to

provide the smoothing effect in reducing the numerical noise caused by cell crossing

of particles. In these methods, the use of particle domain introduces a new numer-

ical length scale in addition to the mesh size and has numerical consequences. For

instance, if the domain size is reduced, the smoothing effects are also reduced. As

we show in Chapter 4 these methods encounter convergence issues as the number of

particles is increased.

To eliminate the cell crossing noise, the third version of the improved material

point method, called the dual domain material point (DDMP) method, uses an equiv-

alent stress field to calculate the internal force. The equivalent stress is constructed

using the stress at the material points and is only different from the original stress

field by an amount of order of (∆x)2 in the sense of weak solution, where ∆x is the

typical mesh size. The internal force calculated using such a stress field is a linear

combination of the products of the particle volumes and the stresses, and the coeffi-
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cients in this linear combination can be then regarded as the modified gradient of the

shape function. The equivalent stress field is constructed in such a way that the cor-

responding modified gradient of the shape function is continuous on cell boundaries.

Unaltered from the original MPM, material points in the DDMP method serve two

roles: as Lagrangian markers carrying history information and as integration points.

These two roles of material points in DDMP are separated in this work to further

improve the performance of DDMP by using sub-points as described in Chapter 4.3.

In this new method the material points or particles are used to carry physical quan-

tities and history information, while the numerical integration is done by using the

sub-points generated at each time step. This improved DDMP method preserves the

conservation properties of the DDMP method without encountering issues of partition

of unity as in the GIMP and CPDI methods. Mass and momentum are conserved ex-

actly, and energy conservation is second order both in spatial and time discretizations

to machine accuracy.

To investigate the properties of different versions of the material point method,

we use them to calculate the propagation of one-dimensional weak isothermal shock

waves in an ideal gas. Although this problem is very simple and even unphysical, it

actually reveals many numerical properties of the MPM methods. One objective of

this dissertation is to improve the material point method by exploiting advantages of

different versions of the material point method, while avoiding their disadvantages.

In this dissertation, the terms material points and particles are used interchangeably.
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The improved DDMP method will be used as continuum solver in our multi-scale

numerical modeling effort, since the main objective of this work is to develop a multi-

scale method applicable to macroscopic problems.

To describe our multi-scale method, we start by examining the validity of contin-

uum formulations. To study its applicability to thermodynamically non-equilibrium

systems, we derive them from molecular dynamics.
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Chapter 2

Liouville Equation and Transport Equations

Starting from the Liouville equation, one can derive the continuum level mass, mo-

mentum, and energy equations with the closure quantities directly related to interac-

tions at the microscopic level [8, 9].

In classical Newtonian mechanics, a system can be completely and uniquely de-

termined by a point C = {x1,x2, · · · ,xN ;v1,v2, · · · ,vN}, in the 6N dimensional

position-velocity phase space. Let P (C, t) be the probability density function corre-

sponding to configuration C so that P (C, t)dC gives the probability of finding such a

system with configuration C at time t, where dC = dx1...dxNdv1...dvN . The Liouville

Equation describes the evolution of probability density function P (C, t) as,

∂P

∂t
+

N∑
i=1

∇xi · (viP ) +
N∑
i=1

∇vi · (v̇iP ) = 0 (2.1)

The Liouville equation is simply a statement of conservation of total number of states

in phase space. In other words, it states that phase space points are neither created

nor destroyed. A complete knowledge of the probability density function enables us

to calculate any averaged physical quantities which are functions of position and/or

velocity coordinates.

For a generic quantity gα pertaining to atom α, the corresponding average g at
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time t and position x is defined as,

n(x, t)g(x, t) =

∫ N∑
α=1

δ(xα(t)− x)gα(C, t)P (C, t)dC, (2.2)

where n is the number density of the atoms which corresponds to gα = g = 1 in the

above equation, i.e.,

n(x, t) =

∫ N∑
α=1

δ(xα(t)− x)P (C, t)dC. (2.3)

Taking moment of equation (2.1) yields continuum equations [8, 9], e.g. for

any quantity gj(C, t) pertaining to a particle j, multiplying equation (2.1) by δ(x −

xj)gj(C, t), summing over all the atoms in the system and then integrating over all

possible configurations C ′s,

∫ ∑
j

δ(x− xj)gj
{∂P
∂t

+
N∑
i=1

∇xi · (viP ) +
N∑
i=1

∇vi · (v̇iP )
}
dC = 0. (2.4)

The first term on the left hand side of equation (2.4),∫ ∑
j

δ(x− xj)gj
∂P

∂t
dC =

∂

∂t

∫ ∑
j

δ(x− xj)gjPdC −
∫ ∑

j

Pδ(x− xj)
∂gj
∂t
,

=
∂(ng)

∂t
−
∫ ∑

j

Pδ(x− xj)
∂gj
∂t
,

(2.5)

where equation (2.2) is used to define ng. The second term of equation (2.4),∫ ∑
j

δ(x− xj)gj
∑
i

∇xi · (viP )dC =

∫ ∑
i

∇xi ·
[
viP

∑
j

δ(x− xj)gj
]
dC

−
∫ ∑

i

viP∇xi ·
[∑

j

δ(x− xj)gj
]
dC.

(2.6)
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After using Gauss divergence theorem, the first term on the right hand side of above

equation becomes a surface integral, which vanishes because P (x1, · · · ,xi−1,±∞,xi+1, · · · ,

xN ;v1,v2, · · · ,vN) = 0. So we can write,∫ ∑
j

δ(x− xj)gj
∑
i

∇xi · (viP )dC =−
∑
j

∑
i

∫
Pvi(∇xi · gj)δ(x− xj)dC

+

∫ ∑
i

Pvigi∇x · δ(x− xi)dC

(2.7)

Here we used ∇xi · δ(x−xi) = −∇x · δ(x−xi). The third term of equation (2.4) is

simplified as,∫ ∑
i

∇vi · (v̇iP )
∑
j

δ(x− xj)gjdC

=

∫ ∑
i

∇vi ·
[
v̇iP

∑
j

δ(x− xj)gj
]
dC −

∫ ∑
i

P v̇i∇vi ·
[∑

j

δ(x− xj)gj
]
dC

= −
∑
j

∑
i

∫
P v̇i(∇vi · gj)δ(x− xj)dC.

(2.8)

Here we used the similar argument that the surface integral vanishes after using Gauss

divergence theorem. Substituting equations (2.5), (2.7) and (2.8) back into equation

(2.4), after exchanging order of ∇x with the integration, one finds,

∂(ng)

∂t
+∇x ·

∫ ∑
i

Pvigiδ(x− xi)dC

=

∫
P
∑
j

[∂gj
∂t

+
∑
i

vi∇xi · gj +
∑
i

v̇i∇vi · gj
]
δ(x− xj)dC.

(2.9)

Using definition (2.2), equation (2.9) becomes a transport equation for a quantity g,
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Finally, the continuum level transport equation for g can be written as,

∂(ng)

∂t
+∇ · (ngv) = n

dg

dt
. (2.10)

Here, we used the definition of an averaged quantity as in equation (2.2) for ndg
dt

noting that gj(C, t) = gj(x1,x2, · · · ,xN ;v1,v2, · · · ,vN , t), the quantity inside the

square bracket of equation (2.9) is the total time derivative
dgj
dt

. Let gj = mj (mass)

in equation (2.10), we find the mass conservation equation,

∂(nm)

∂t
+∇ · (nmv) = 0

∂ρ

∂t
+∇ · (ρṽ) = 0

(2.11)

Here, the mass density ρ is defined as ρ = nm. The Favre average velocity ṽ is defined

as ṽ = nmv/ρ.

Similarly, letting gj = mjvj (momentum), one finds the momentum equation,

∂ρṽ

∂t
+∇ · (ρṽṽ) = ∇ · σk + nf + ρb, (2.12)

where b is the body force, σk is the stress due to velocity fluctuations,

σk(x, t) = −
∫ N∑

α=1

δ(xα − x)mα(vα − ṽ)(vα − ṽ)P (C, t)dC, (2.13)

and

nf =

∫ N∑
α=1

δ(xα − x)fα(C, t)P (C, t)dC, (2.14)

with fα(C, t) being the total force acting on atom α by other atoms in configuration

C. Let fαβ be the force atom β acting on α. The total force can be written as

fα =
N∑
β=1

fαβ. (2.15)
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With this decomposition of force, equation (2.14) can be written as,

nf =

∫ N∑
α=1

N∑
β=1

δ(xα − x)fαβP (C, t)dC, (2.16)

nf =
1

2

∫ N∑
α=1

N∑
β=1

[δ(xα − x)− δ(xβ − x)]fαβP (C, t)dC. (2.17)

Here, we used fαβ = −fβα. Using the theorem in Appendix A of [25], we can write,

nf = ∇ · σf , (2.18)

where

σf (x, t) =
1

2

∫ N∑
α=1

N∑
β=1

δ(ξxβ + (1− ξ)xα − x)(xβ − xα)fαβ(C, t)P (C, t)dC, (2.19)

is the stress due to interaction forces among the atoms with 0 ≤ ξ = ξ(C, t) ≤ 1.

Using (2.18), we can write momentum equation (2.12) in terms of the total Cauchy

stress σ = σk + σf ,

∂ρṽ

∂t
+∇ · (ρṽṽ) = ∇ · σ + ρb. (2.20)

Although the derivation of the stress in [8, 9] uses the abstract Taylor expansion

of the δ−function, it is equivalent to translating configuration C by a small distance of

order of atomic length scale `a in the physical space [25, 26], assuming the probability

distribution function P (C, t) is differentiable with respect to this translation. This

assumption implies separation between the atomic length scale `a and the macroscopic

length scale Lm (`a << Lm). Under this assumption, within an error of order (`a/Lm)2

in momentum equation (2.20), we can set ξ = 0 in (2.19). In the derivation of

these continuum scale equations, the assumption of thermodynamic equilibrium is
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not necessary, therefore these equations are applicable to material deformations under

high strain rates.

The stress σf defined in (2.19) is not the only one satisfying (2.18). Stress σf can

differ by a divergence free tensor without a consequence to the dynamics of the system.

Furthermore, for a given potential among atoms, the stress defined in (2.19) is still

not unique, because there are different ways [27, 28] of decomposing the force acting

on an atom into pair interaction forces while yielding the same total force in (2.15).

Different decompositions lead to different fαβ, and different stresses calculated from

(2.19). In continuum mechanics, the difference in the divergence free stress is often

regarded as a residual stress, which depends on the definition of the “undeformed”,

or the reference state.

In principle, this non-uniqueness does not have a consequence for us to perform

the multiscale calculation described in this thesis work, because it is the divergence

of the stress, not the stress itself, drives the evolution of the macroscopic momentum

as in (2.20). However, it is still desirable, at least comforting, to know that this

stress is consistent with the stress defined in continuum mechanics at the limit of

thermodynamic equilibrium.

Let x be the geometric center of a representative volume Vc with length scale

Lc(>> `a). If Lc << Lm, we have

σ(x, t) = σv(x, t) +O

(
L2
c

L2
m

)
= σk

v(x, t) + σf
v(x, t) +O

(
L2
c

L2
m

)
, (2.21)

where over bar with superscript v, ( · v ), denotes average over the representative
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volume Vc. Using (2.19) after exchanging the order of the volume and ensemble

averages, (the order of the probability integration with the volume integration), we

have

σv(x, t) =
1

Vc

∫
Vc

σ(y, t)d3y

=

∫
1

Vc

∑
xα∈Vc

[
mα(vα − ṽ)(vα − ṽ) +

1

2

∑
β

(xβ − xα)fαβ

]
P (C, t)dC +O

(
`a
Lm

)
,

(2.22)

where Vc is the representative volume, the first summation is over all the atoms in the

representative volume Vc, and the second summation is over all the atoms interacting

with atom α (fαβ 6= 0). If atom α is close to a boundary of Vc, atom β could be

outside of the volume, but must be within the vicinity, (within a distance of order

`a), of the boundary, if the range of the interaction forces is of that order. Such cross-

boundary interacting atom pairs are located in the region near the boundary. The

volume of the boundary region is of order `aL
2
c . Neglecting such pair interactions in

the boundary region causes an error of order `a/Lc in the stress, which is insignificant

for Lc >> `a. Allowing this error, to calculate the volume averaged stress σv, we

can only consider the interaction pairs inside Vc and approximate
∑

β in (2.22) with∑
xβ∈Vc . Noting fαβ = −fβα, we have

∑
xα∈Vc

∑
xβ∈Vc

(xβ−xα)fαβ = −
∑
xβ∈Vc

xβ
∑
xα∈Vc

fβα−
∑
xα∈Vc

xα
∑
xβ∈Vc

fαβ = −2
∑
xα∈Vc

xαf
int
α ,

(2.23)

where f intα =
∑
xβ∈Vc fαβ is the sum of the forces from the atoms inside the rep-

resentative volume, or the total internal force. Using this relation in (2.22), under
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condition `a << Lc << Lm we find

σv =

∫
1

Vc

∑
xα∈Vc

[mα(vα − ṽ)(vα − ṽ) + xαf
int
α ]P (C, t)dC +O

(
L2
c

L2
m

)
+O

(
`a
Lc

)
.

(2.24)

In almost all practical cases, when the representative volume is sufficiently large

(Lc >> `a), the volume averaged value in (2.24) or (2.22) becomes insensitive to

configuration C. Noting that
∫
P (C, t)dC = 1, using (2.21), (2.22) and (2.24) under

condition `a << Lc << Lm we have,

σ ≈ σv ≈ 1

Vc

∑
xα∈Vc

[
mα(vα − ṽ)(vα − ṽ) +

1

2

∑
β

(xβ − xα)fαβ

]

=
1

Vc

∑
xα∈Vc

[mα(vα − ṽ)(vα − ṽ) + xαf
int
α ] +O

(
`a
Lc

)
. (2.25)

In deriving these relations, we have only used the separation of the atomic and

the macroscopic length scales. This length scale separation allows us to calculate

the stress as an average over a representative volume with a length scale between the

atomic and the macroscopic length scales without explicitly specifying the probability

distribution function P (C, t).

The second line of (2.25) is the virial expression of the Cauchy stress. In continuum

mechanics under the assumption of thermodynamic equilibrium, the expression can be

obtained by differentiating the Helmholtz free energy with respect to the deformation

gradient tensor [27, 29]. Therefore, the stress σ used in this work is consistent with

the stress in classical continuum mechanics.

In our MD simulation, the representative volume is a periodic box described in
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Chapter 5.2. To avoid the error related to interaction pairs near the boundaries in our

computational domain and to take advantage of the periodic boundary conditions,

the potential part of stress σv is calculated using the first line of (2.25) with pair

interaction forces.
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Chapter 3

Material Point Methods

Material point method (MPM) is an advanced form of particle in cell method [15],

developed by Frank Harlow. The current version of MPM is developed by Sulsky

et al. [16]. Similar to finite element method (FEM), MPM is also based on weak

formulation of partial differential equations. In MPM, the transport equations are

solved in the predefined background grids. The material points are used as integration

points as in FEM. Those grids can remain fixed or they can be reinitialized, and the

material points move to follow the motion of the material. Therefore MPM uses

both Lagrangian and Eulerian descriptions, making this method suitable for large

deformation problems.

3.1 Original material point method

Let us write the momentum equation (2.20) in lagrangian form and neglecting the

body force as,

ρ
dv

dt
−∇ · σ = 0. (3.1)

For an arbitrary continuous function φ, we have,

∫
(ρ
dv

dt
−∇ · σ)φdV = 0. (3.2)
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Above equation is the weak formulation of the momentum equation (3.1). Let us

discretize v and φ using shape functions as, v =
∑N

i=1 viSi(x) and φ =
∑N

i=1 φiSi(x),

where N is the number of mesh nodes, vi is the value of v at node i, φi is the value

of φ at node i, Si is the shape function associated with the node i. Equation (3.2)

can now be written as,

∑
i

φi
∑
j

dvj
dt

∫
ρSj(x)Si(x)dV −

∑
i

φi

∫
(∇ · σ)Si(x)dV = 0. (3.3)

∑
i

φi
∑
j

dvj
dt
Mij −

∑
i

φi

∫ {
∇ · [σSi(x)]− σ · ∇Si(x)

}
dV = 0. (3.4)

After using Gauss theorem in the first term inside the integral and since φi is an

arbitrary function, we can write,

N∑
j=1

Mij
dvj
dt
−
∫
σ · nSi(x)dA+ f inti = 0, (3.5)

where n is the outward normal on the boundary of the computational domain, dA is

an element of surface area, Mij is an element of the mass matrix, f inti is the internal

force. The mass matrix element Mij is defined as

Mij =

∫
ρSi(x)Sj(x)dV, (3.6)

and the internal force takes the form

f inti = −
∫
σ · ∇Si(x)dV. (3.7)

By dividing the computational domain into material points with volume Vp, the mass

matrix element Mij and internal force are approximated as,

Mij ≈
np∑
p=1

mpSi(xp)Sj(xp), (3.8)
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f inti = −
np∑
p=1

Vpσp · ∇Si(xp). (3.9)

Here mp is the mass of the material point p, np is the total number of material points,

and σp is the stress at the material point. Equation (3.5) is a system of coupled

linear equations. Noting that Mij is non-zero only for the node j’s that are within

the support of the shape function Si, within an error O[∆x]2,
dvj
dt

can be approximated

using dvi
dt

, if node i corresponds to its surrounding cells [30].

Using this approximation, equation (3.5) can be decoupled as,

Mi
dvi
dt
−
∫
σ · nSi(x)dA+ f inti = 0, (3.10)

where

Mi =
N∑
j=1

Mij ≈
np∑
p=1

mpSi(xp). (3.11)

The approximation used in equation (3.10) is called lumped mass matrix approxi-

mation. Here, we have replaced the mass matrix Mij by a diagonal matrix with the

diagonal element being the sum of the elements in the same row. This approximation

is known to cause artificial energy dissipation of order [∆t]2 [30].

After we calculate the acceleration on node i using equation (3.10), the lagrangian

velecity of node i is updated as,

vLi = vni +
dvi
dt

∆t, (3.12)

where the superscript L denotes the lagrangian step and the superscript n denotes

the value at time step n. The material point velocity is now updated as,

vn+1
p = vnp +

N∑
i=1

(vLi − vni )Si(x
n
p ). (3.13)
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Here we have interpolated the nodal velocity difference (vLi − vni ) to the material

point to prevent the numerical diffusion, since this prevents from changing the particle

velocity if there is no nodal acceleration in equation (3.12) and subsequently no driving

force in equation (3.10). Similarly, the positions of material points are updated using

the average nodal velocities interpolated to the material point, i.e.,

xn+1
p = xnp +

1

2
∆t

N∑
i=1

(vLi + vni )Si(x
n
p ). (3.14)

The nodal velocity corresponding to time step n+ 1 is updated as,

N∑
j=1

Mijvj ≈
np∑
p=1

mpvpSi(xp). (3.15)

The above equation is also decoupled approximating vj with vi using the similar

argument about local support to decouple equation (3.5) and the lumped mass matrix

approximation,

Mivi ≈
np∑
p=1

mpvpSi(xp). (3.16)

Putting them together, following are the steps for a typical MPM calculation.

1) Initialize the grid structure as well as the material point positions as shown in

figure 3.1.

2) Initialize particle quantities such as mass, stress, etc.

3) Compute nodal masses Mi =
∑np

p=1mpSi(xp).

4) Compute nodal velocities vi =
∑np
p=1mpvpSi(xp)

Mi
.

5) Compute internal forces f inti = −∑np
p=1 Vpσp · ∇Si(xp).

6) Compute Lagrangian nodal velocities vLi = vni + dvi
dt

∆t.
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Figure 3.1 : Typical initialization of material points in background mesh

7) Compute velocity gradient tensor ∇v(x, t) =
∑N

i=1 vi(t)∇Si(x).

8) Compute stresses in each particle.

9) Update particle velocities vn+1
p = vnp +

∑N
i=1(vLi − vni )Si(x

n
p ).

10) Update particle positions xn+1
p = xnp + 1

2
∆t
∑N

i=1(vLi + vni )Si(x
n
p ).

11) Proceed to step (3).

To calculate internal force, equation (3.9) is used directly in the original MPM

[16]. A significant problem arises due to the discontinuity in the shape function

gradient, ∇Si(xp), which is illustrated for a one-dimensional case in Fig. 3.2. The

discontinuity of the gradient of shape function at node i causes the internal force, to

suddenly switch signs as a particle crosses a cell boundary, creating numerical noise

that could lead to numerical instability. There are many existing methods available
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Figure 3.2 : Illustration of the gradient of the shape function used in traditional MPM
(dotted line) and used in DDMP (solid line) at node i. ∆x is the grid spacing.

to solve this issue. We will discuss the existing methods in the next section.

3.2 Material point methods: GIMP and CPDI

The generalized interpolation material point metod (GIMP) introduces effective av-

erages of the shape functions and gradient of shape functions over particle domain

[23]. In GIMP, the modified shape function and gradient of shape function can be

written as,

Sip =
1

Vp

∫
Ωχ

χp(x− xp)Si(x)dx, (3.17)

∇Sip =
1

Vp

∫
Ωχ

χp(x− xp)∇Si(x)dx, (3.18)
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where Si and∇Si are the shape function and gradient of shape function of the original

material point method, Vp is the volume of material point p, χp(x) is the particle

characteristic function, and Ωχ is the support of this function. A typical choice for

χp(x) in GIMP is,

χp(x) =


1, if x ∈ Ωp,

0, otherwise.

(3.19)

For one-dimensional problems, the particle characteristic function can simply be writ-

ten as,

χp(x) =


1, if |x| ≤ lp/2,

0, otherwise.

(3.20)

We can see from equation (3.17) and (3.18) that if we choose a dirac delta function

as particle characteristic function, the shape function and gradient of shape function

of GIMP retain original MPM formulation. As discussed earlier in Chapter 1.3, there

are two strategies in GIMP method to track the particle domains during calculation.

The first approach is uGIMP (unchanged GIMP) where the particle domain χp is kept

fixed, and the second one is cpGIMP (contiguous particle GIMP) where the particle

domain χp is updated but remains rectangular.

Thus, in both uGIMP and cpGIMP method, the particle domain is tracked as

rectangular. The GIMP method has been successfully implemented to reduce the

cell crossing noise of the original MPM method for problems involving small material

deformations [23, 31, 24].
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In case of shear deformation, the shape of the particle domain becomes parallel-

ogram. In order to track the particle domain as parallelogram, the GIMP method

requires a complicated subdivision of particle domain across the cell boundaries [24].

For this reason, the CPDI method is developed.

In CPDI method, the particle domains are tracked as parallelograms [24, 32]. In

this method, the equations (3.17) and (3.18) are written as,

Sip =
1

Vp

4∑
j=1

(∫
Ωp

Qp
j(x)dx

)
Si(x

p
j), (3.21)

∇Sip =
1

Vp

4∑
j=1

(∫
Ωp

∇Qp
j(x)dx

)
Si(x

p
j), (3.22)

where Qp
j is the standard finite element 4-node shape function corresponding to the

jth corner for the particle domain related to material point p and xpj is the position

of the jth corner of the particle domain. In one-dimensional problems, these shape

function and gradient of shape function can be calculated as,

Sip =
1

2
[Si(x

p
1) + Si(x

p
2)] , (3.23)

∇Sip =
1

lp
[(Si(x

p
2)− Si(xp1))] . (3.24)

The CPDI method has been successfully used for problems involving large shear

deformation [24, 32]. In cases of extreme material deformation, the particle domains

can be distorted severely. This is similar to element distortion problem associated

with pure Lagrangian methods as in FEM. Also in both CPDI and GIMP methods,

the particle domains must cover the entire computational domain without overlap to
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conserve momentum. For extreme deformation, this condition becomes difficult to

satisfy.

In DDMP method, instead of modifying the shape functions, the gradient of shape

function is modified so that it is continuous across the cell boundaries. This method

does not use the particle domain, thus does not have the domain overlap problem.

The detailed description of the DDMP method is given in the following section.

3.3 Dual domain material point method (DDMP)

Instead of introducing the concept of finite particle domain as in the GIMP and CPDI

methods, the DDMP method reduces the cell crossing noise by adding an auxiliary

stress [33]

σA = A(x, t) +
∑
j

Sj(x)

Vj

Np∑
p=1

Vp(t)σp(t)Sj(xp)− σ(x, t) (3.25)

to the stress σ in (3.9) to improve the numerical properties of the integral, where

A(x) =

Np∑
p=1

α(xp)Vpσpδ(x− xp)−
N∑
j=1

Sj(x)

Vj

Np∑
p=1

α(xp)VpσpSj(xp), (3.26)

and α(x) is a continuous function whose value is zero on cell boundaries. A typical

choice for α(x) is [33]

α(x) = 0.5

{
nc∏
k=1

[ncSk(x)]

} 3
2(nc−1)d

, (3.27)

where nc is the number of nodes in the cell, and d(= 1, 2, 3) is the dimension of the

problem.
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To ensure that the addition of the auxiliary stress σA in (3.9) does not affect the

accuracy of the numerical solution to the original equations, which is second order

in ∆x, one needs to ensure the auxiliary stress is of the same order. It has been

proved in [33] that A(x) = O(∆x)2, independent of choice of the material points,

their volumes, and function α(x). The proof is based on the relation

h(x) =
N∑
j=1

hjSj(x) +O(∆x)2 =
N∑
j=1

[
1

Vj

∫
Ω

Sj(y)h(y)dvy

]
Sj(x) +O(∆x)b, (3.28)

where h(x) is a smooth function, hj is the value of h(x) at node j, and b = 2 if x

is located in an interior cell, and b = 1 if x is in a boundary cell. The first identity

comes from the property of the shape functions, and the second relation holds because

hj =
∫

Ω
Sj(y)h(y)dvy/Vj+O(∆x)b and Vj =

∫
Ω
Sj(y)dvy, or in other words, the value

of h at a mesh node can be approximated by the average value in the square brackets

in (3.28).

The summation over material points in (3.25) can be regarded as a Riemann

sum. As the maximum volume of the particles vp approaches zero, the sum becomes∫
Ω
Sj(y)σ(y, t)dvy. Using relation (3.28), one finds

lim
max(Vp)→0

∑
j

Sj(x)

Vj

Np∑
p=1

Vp(t)σp(t)Sj(xp) =
N∑
j=1

[
1

Vj

∫
Ω

Sj(y)σ(y)dvy

]
Sj(x)

= σ(x, t) +O(∆x)b. (3.29)

Thus, we have proved that, in the sense of weak solutions, the auxiliary stress defined

in (3.25) is second order in ∆x, σA(x) = O(∆x)2, when a sufficient number of material

points is used, because the total volume of the boundary cells is proportional to ∆x.
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With this property of σA, we can add σA to the original stress without changing

the order of accuracy in the internal force calculation, and the force integral can be

calculated as,

f inti ≈ −
∫

Ω

(σ + σA) · ∇SidV = −
Np∑
p=1

Vpσp · ∇Si(xp), (3.30)

where

∇Si(x) = α(x)∇Si(x) + [1− α(x)]
N∑
j=1

Sj(x)

Vj

∫
Sj(y)∇Si(y)dVy, (3.31)

with N being the number of the nodes in the computational domain. In this way,

one can also regard that the DDMP method replaces the discontinuous derivative

of the shape function ∇Si with ∇Si defined in (3.31). ∇Si is continuous because

the shape function Sj(x) is continuous, and α(x) = 0 on cell boundaries, where the

discontinuity in ∇Si occurs.

Both the original MPM and the DDMP method use Riemann sums, but they are

used for different purposes. In the original MPM, the Riemann sum is used essentially

for numerical differentiation of the stress by summing over the products of the stresses

and the gradients of the shape functions. The increase of the number of material

points causes more frequent numerical noise generation as more material points can

move across cell boundaries. Although the magnitude of the noise generated by

each particle is reduced because the resulting discontinuity in the internal force is

proportional to the particle volume, the overall effect on the numerical solution quality

is very limited as discussed in Chapter 4.
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In the DDMP method, the Riemann sum is used to approximate the integral

of the stress around a mesh node. The increase of the material points provides an

improved accuracy in the calculation of the average nodal stress as required in (3.29),

leading to a better solution quality. Although the first term in (3.31) is similar to the

Riemann sum used in the MPM for numerical differentiation of the stress, its presence

in DDMP is for the purpose of numerical stability, not for numerical differentiation.

It comes from stress A defined in (3.26). The two terms in (3.26) almost cancel each

other and A = O(∆x)2 independent of material points [33]. The presence of A

eliminates a null space of stress in the force calculation and provides the effect of

using staggered grids. For instance, in cases of a uniform mesh in a one-dimensional

problem or a uniform rectangular mesh in a two-dimensional problem, if the stresses

in the neighbor cells take values of equal magnitudes but opposite signs, the stress

“checker boarding” situation, the second term in (3.25) vanishes. Without A, the

internal nodal force calculated using σ + σA in (3.9) or from (3.30) is exactly zero,

therefore provides no resistance to this spurious stress mode. With the presence of A,

while the second term of (3.26) also vanishes, the first term of (3.26), which results in

the first term in (3.31), causes a nonzero internal force leading to a material motion

reducing the magnitude of the spurious stress.

With this understanding of the DDMP method and the particle sum in (3.30), we

find that the increase of material points provides a better approximation to the nodal

stress as shown in (3.29) and a better solution quality as shown in Fig. 4.6. However,
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in many applications, such as the combined MD and DDMP calculation studied in

this thesis work, the calculation of stress at a material point is expensive.

In Chapter 4, we will introduce a new method, DDMP with Sub-points, that has

the accuracy equivalent to the use of many particles in the DDMP method but with

the amount of computation greatly reduced. This new method incorporates the idea

of particle domains of GIMP and CPDI, but without the need to track their shapes

exactly.
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Chapter 4

Material point methods applied to

one-dimensional shock waves and dual domain

material point method with sub-points

In this Chapter, we use a simple one-dimensional shock problem to investigate the

numerical properties of the original material point method (MPM), the generalized

interpolation material point (GIMP) method, the convected particle domain interpo-

lation (CPDI) method, and the dual domain material point (DDMP) method. The

experimental set up is similar to Sod shock tube problem. Suppose a one-dimensional

tube initially separated by a partition located at node j in Fig. 4.1. To the left of the

partition the gas pressure is slightly higher than that to the right. The gas on the

both sides of the partition is at rest initially. At time t = 0 the partition is suddenly

removed. A shock wave starts propagating to the right side of the tube, where as an

expansion wave starts propagating to the left.

4.1 Shock wave simulated using original MPM

In original MPM, the internal force is calculated simply as a Riemann sum of the

material points [16] as described in Chapter 3.1

f inti ≈ −
Np∑
p=1

σ(xp, t)Vp · ∇Si(xp), (4.1)
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j−2 j−1 j j+1 j+2

Figure 4.1 : Particles and cells in a one-dimensional weak shock calculation.

where xp is the material point location, Np is the number of particles in the compu-

tational domain, and Vp is the volume of the material point.

While this approximation has been successfully used in many MPM calculations,

mostly for solid materials, we now show this approximation fails if we use it to cal-

culate a small perturbation of an ideal gas under isothermal condition, in which

material points do not move across cells. For this shock tube problem, physically we

expect to see a weak shock and expansion wave to propagate either direction in the

computational domain. However if we use approximation (4.1), we have

f inti ≈
Np∑
p=1

VpPp∇Si, (4.2)

where Pp is the pressure P at material point p. In an isothermal case, VpPp equals

to two constants CL or CR respectively for the particles initially located at the left

or right of the partition. Since ∇Si is piecewise constant, for particle distributions

shown in Fig. 4.1 only node j, the location of initial partition, experiences a net non-

zero force. The net force at all other nodes is exactly zero. As a result, only node j

acquires an acceleration to the right, while all other nodal accelerations remain zero.

Then only particles in cells between nodes j − 1 to j + 1 obtain velocity increases,
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while other particle velocities remain zero, according to node-particle velocity relation

vn+1
p = vnp +

N∑
i=1

Si(x
n
p )
dvi
dt

∆t, (4.3)

where the superscripts denote the time step. After the particles move according to

the velocity interpolated from nodes, their velocities are mapped to nodes using

vn+1
i =

∑Np
p=1mpv

n+1
p Si(x

n+1
p )∑Np

p=1 mpSi(xn+1
p )

. (4.4)

Only nodes j− 1, j, and j+ 1 achieve nonzero velocities, while other nodal velocities

are zero. When these nodal velocities are used to calculate the stress or pressure

at the particles, only the pressure between these nodes j − 2 and j + 2, the four

cells on both sides of j as shown in Fig. 4.2 with j = 0, are changed, while other

particle pressures remain unaltered. As time advances, the velocities at node j and

the two neighboring nodes continue to increase, while other nodal velocities remain

zero. The waves fail to propagate. During this time the particle pressures in the two

cells left of node j continue to decrease and even become less than the initial value

on the right. Similarly, the particle pressures in the two cells right of node j continue

to increase and exceed the initial value on the left. The resulting high pressures at

the particles on the right cannot push nodal velocity back because in this isothermal

case, the particle volume is reduced, and VpPp = CR. Similarly the resulting low

pressures at the left particles cannot pull nodal velocity back because VpPp = CL.

Since CL > CR, the nodal force from (4.2) is always positive for node j = 0, and the

process accelerates. This process is shown in Fig. 4.2 for particle pressure values at

different times.
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Figure 4.2 : Particles pressure near one-dimensional shock front. Position 0 corre-
sponds node j in Fig. 4.1.

This process continues until the first particle left of the partition moves into the

right cell, as shown in Fig. 4.2 at t = 10∆x/c, where c is the speed of sound. At

that time the forces on nodes j − 1 and j + 1 become nonzero, and then the particle

pressures in the next neighboring cells start being affected. However this propagation

of the disturbance is purely numerical, is not continuous, occurs only after the particle

has been displaced by a quarter of the cell length for the particle arrangement shown

in Fig. 4.1, and is too late for a proper propagation of the waves.

Despite the incorrect wave propagation results explained above, the process of

material point motion resembles material motion in the physical situation: as time

advances, some of the material in the left cell moves across the nodes into the cell



39

Position(x/∆x)
-200 -100 0 100 200

P
/P

0

1

1.005

1.01

1.015
Time = 125 ∆x/c

Analytic Solution

MPM 500-cells, 512-pars per cell

-45 -40 -35

1.004

1.005

1.006

(a)

Position(x/∆x)
-200 -100 0 100 200

P
/P

0

1

1.005

1.01

1.015
Time = 125 ∆x/c

Analytic Solution

MPM 500-cells, 1024-pars per cell

-45 -40 -35

1.004

1.005

1.006

(b)

Figure 4.3 : Particle pressure calculated with MPM method using (a) 512 particles
per cell, (b) 1024 particles per cell.

on the right to cause a pressure change. In the MPM method, because the mass is

lumped at material points, this cell crossing motion does not occur until the material

point moves across a cell. One might think that if sufficient number of material

points are used, the cell crossing can happen earlier so that the pressure disturbance

can propagate to the other nodes earlier and the pressure inversion can be avoided.

This physical intuition is correct. However, the use of many material points results

in noise and pressure spikes as shown in Fig. 4.3 calculated using 512 and 1024

particles per cell in the initial particle placement with time step 0.1∆x/c. In the

figure the results roughly approximate the correct behavior. The numerical quality

is apparently unsatisfactory, although the results are slightly better with the larger

amount of particles.

The spike is caused by cell crossing of the particles. Suppose one particle moves

from a high pressure cell to a low pressure cell carrying a high pressure value with it.
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While this new member in the low pressure cell contributes to the resistance to the

compression of the low pressure cell, the majority of particles in the cell are still at low

pressure. The cell is still being compressed causing a pressure increase for particles

in the low pressure cell, including the new member carrying a high pressure value.

This trend is correct for most of the particles in the cell, but for the particle just

arrived from the high pressure cell, this compression further increases its pressure,

instead of relieving it. Meanwhile, the upstream particles remaining in the high

pressure cell experience a pressure release from a positive velocity divergence in the

cell. The particle that just moved into the low pressure cell experiences a further

pressure increase, while its upstream neighbors experience a pressure release, and its

downstream neighbors are still at their low pressure values. Thus, the particle that

just entered the low pressure cell has a higher pressure value than its neighbors, and

it generates a pressure spike.

These pressure spikes are caused by particles moving across cell boundaries, and

currently there are three versions of the material method, GIMP, CPDI and DDMP

available to reduce the cell crossing noise. In the next section we use them to see how

they perform in this case of one-dimensional shock propagation.

4.2 Comparison of GIMP, CPDI and DDMP method

The results of GIMP are shown in Fig. 4.4. There is a significant improvement com-

pared to the original MPM results. Instead of needing a few hundred particles per cell
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Figure 4.4 : Particle pressure calculated with GIMP method using (a) 8 particles per
cell, (b)16 particles per cell, (c) 32 particles per cell, and (d) 64 particles per cell.

to show just the rough shape of the results as in Fig.4.3, the GIMP results obtained

using 8 particles per cell in the initial particle placement result in acceptable results

compared to the analytic solution. However, the pressure spikes are evident as more

particles per cell are used. Fig. 4.4 shows results calculated using 8, 16, 32, and 64

particles per cell in the initial particle placement. This behavior of the solution is

qualitatively similar for the CPDI method as shown in Fig 4.5. The improvement

of these two methods over the original MPM comes from the introduction of finite
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Figure 4.5 : Particle pressure calculated with CPDI method using (a) 8 particles per
cell, (b) 16 particles per cell, (c) 32 particles per cell, and (d) 64 particles per cell.

particle size. In the internal force calculation, instead of using the gradient of the

shape function evaluated directly at a particle location, which abruptly changes by

2/∆x in a time step in this one-dimensional case as the particle moves across a cell

boundary in the original MPM, the GIMP and CPDI methods replace this discon-

tinuous value of the shape function gradient at a material point by its average over

the finite particle domain. With this replacement, for a particle near a cell boundary,

the change in the value of the modified gradient of shape function in a time step is



43

Position(x/∆x)
-200 -100 0 100 200

P
/P

0

1

1.005

1.01

1.015
Time = 125 ∆x/c

Analytic Solution

DDMP 500-cells, 8-pars per cell

-60 -40

1.003

1.004

1.005

1.006

1.007

(a)

Position(x/∆x)
-200 -100 0 100 200

P
/P

0

1

1.005

1.01

1.015
Time = 125 ∆x/c

Analytic Solution

DDMP 500-cells, 16-pars per cell

-45 -40 -35

1.0045

1.005

1.0055

(b)

Position(x/∆x)
-200 -100 0 100 200

P
/P

0

1

1.005

1.01

1.015
Time = 125 ∆x/c

Analytic Solution

DDMP 500-cells, 32-pars per cell

-45 -40 -35

1.0045

1.005

1.0055

(c)

Position(x/∆x)
-200 -100 0 100 200

P
/P

0

1

1.005

1.01

1.015
Time = 125 ∆x/c

Analytic Solution

DDMP 500-cells, 64-pars per cell

-45 -40 -35

1.0045

1.005

1.0055

(d)

Figure 4.6 : Particle pressure calculated with DDMP method using (a) 8 particles
per cell, (b) 16 particles per cell, (c) 32 particles per cell, and (d) 64 particles per cell.

limited by 2|vp|∆t/(∆x `p), if |vp|∆t ≤ `p, where `p is the particle length in this one-

dimensional case. These methods require that, at least initially, the particle domains

cover the entire computational domain without gap or overlap. As the number of

material points per cell increases, the size `p of the particle is reduced, and change

in the modified shape function gradient in a time step is increased. Although the

use of a large number of particles increases the numerical integration accuracy in the

internal force calculation, the effect of this accuracy increase is very limited because
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the use of small number of particles already produces reasonable results as shown in

Figs. 4.4 and 4.5. The pressure spikes are not caused by the lack of the integration

accuracy, but rather by the discontinuity or rapid change of the value of the shape

function gradient in a time step. When the particle size `p becomes less than |vp|∆t,

or the finite-domain particle moves across a cell boundary completely in a time step,

the change becomes to 2/∆x, the same value as in the original MPM, and the benefit

of using a finite particle domain is lost completely. In other words, the introduction

of finite particle domain also introduces a concept of the particle Courant number,

|vp|∆t/`p, based on the particle size. The benefit of GIMP and CPDI methods re-

duces with increasing particle Courant number. Therefore, as the number of particles

per cell increases, the pressure spikes increase. The appearance of the spikes at large

number (> 8) of particles per cell might not be a significant issue for this problem

with a small deformation, because one can always use a small number of particles

per cell, but this is a special case of isothermal shock. For problems with large de-

formation, however, we do not have control on the number of particles per cell, and

particles can aggregate in certain regions of the computational domain.

This weak shock problem is also calculated using the DDMP method, as shown in

Fig. 4.6. With 8 particles per cell in the initial particle placement, the results show

spurious oscillation in Fig. 4.6(a) and are worse than the GIMP and CPDI methods.

But different from the GIMP and CPDI methods, DDMP results improve as the

number of particles increases.
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From these results calculated using different versions of the material point method,

we conclude that

1. The original MPM cannot be used for this weak shock propagation problem.

2. The finite-sized particle domains used in GIMP and CPDI methods provide

smoothing effects, and therefore, when a small number of particles are used, the

GIMP and CPDI methods give reasonable results for this weak shock problem.

But these methods can only benefit calculations with a sufficiently small particle

Courant number, and fail as number of particles increases.

3. The DDMP method is inaccurate when a small number of particles are used,

but improves as the number of particles increases. However, the large num-

ber of particles required to achieve accurate results renders this method very

expensive, especially for similar problems in two- or three- dimensional cases.

Since the DDMP method is the only one among the four versions of the material

point method that converges to the correct solution with increasing particle number,

in the rest of this Chapter we focus on improvements to the DDMP method.

4.3 DDMP with Sub-points

In the Riemann sum (3.29), the length scale of the stress variation is determined by

the physical problem, while the length scale of shape function is the cell size ∆x as

shown in figure 4.7, which is much smaller compared to the physical length scale in a
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∆x

σ(x,t)

∇Si(x)

Figure 4.7 : One-dimensional illustration of the sub-point algorithm. Four particles
or material points are divided into 22 sub-points, represented by hollow or solid circles
and squares. Each of these sub-points is an integration point in (6.2). The sub-point
belonging to the same particle share the same value of the stress.

reasonable calculation. The need for many material points in (3.29) arises not from

the stress variation but from the variation of the shape functions over the cell size

∆x. The new method originates from this observation and uses a small number of

particles, say two particles per spatial dimension per cell, to adequately represent

the stress variation over the physical length scale. We split each particle (p) into

a group of (np) sub-particles or sub-points having the same stress as the original

particle. These sub-points are distributed around the original material point. With

these sub-points we re-write (3.30) as,

f inti = −
Np∑
p=1

σp ·
np∑
s=1

Vps∇Si(xps) = −
Np∑
p=1

σpVp · ∇Si(xp), (4.5)

where Vps is the volume of sub-point s belonging to original particle p satisfying∑np
s=1 Vps = Vp, xps is the position of the sub-point, and

∇Si(xp) =
1

Vp

np∑
s=1

Vps∇Si(xps), (4.6)
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is the sub-point volume weighted average of ∇Si. The method of specifying volumes

and positions of the sub-points will be discussed later. Equation (4.5) can be derived

by following the derivations from (3.25) to (3.30). One can first treat all the sub-

points as ordinary DDMP particles, calculate the internal force using (3.30), and then

factor out stresses from the group of sub-points belonging to the same main particles

p. With many sub-points, the approximation of (3.29) is better leading to enhanced

quality of the numerical solution.

As number of sub-points approaches infinity, the new gradient of the shape func-

tion defined in (4.6) approaches
∫

Ωp(t)
∇SidV/Vp, where Ωp(t) is the particle domain.

Although ∇Si is a function independent of the particles as defined in (3.31), direct

evaluation of the integral is not an easy task, because the particle domain Ωp(t) is a

function of time. Approximately tracking the particle domain is a main task of the

CPDI method. Unfortunately, the approximation introduced in the CPDI method

does not satisfy the conservation properties required for high quality numerical solu-

tions, but the scheme of approximately tracking the particle domains is useful in our

new method introduced here. Let us first study the conservation properties of this

new method.

Relation (4.6) can be viewed as another modification to the gradient of the shape

function. With this modified gradient of the shape function, we can still easily prove

that
N∑
i

f inti = 0, (4.7)
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because
∑N

i ∇Si(xps) = 0 according to (30) in [33], where N is number of mesh

nodes. This relation shows that the internal forces sum to zero over the computational

domain and ensures momentum conservation. Because the method of computing

nodal mass is not changed in this new method, mass conservation is unaffected.

To consider energy conservation, we note that kinetic energy difference in a time

step n to n+ 1 can be calculated using (46) in [33]

Kn+1 −Kn = ∆t
N∑
i=1

v
n+1/2
i ·

N∑
`=1

C` if
int
` , (4.8)

after neglecting the boundary force and body force terms, where C` i is the force

transfer coefficient [33, 34] and v
n+1/2
i = (vLi + vni )/2 is the half time Lagrangian

velocity, with vLi being the Lagrangian velocity obtained from (3.5).

Substituting (4.5) into (4.8), we find

Kn+1 −Kn = −∆t

Np∑
p=1

Vpσp : ∇vn+1/2
(xnp ) (4.9)

where

∇vn+1/2
(xnp ) =

N∑
`=1

N∑
i=1

C` iv
n+1/2
i ∇S`(xnp ) =

1

Vp

np∑
s=1

Vps

(
N∑
`=1

∇S`(xps)
N∑
i=1

C` iv
n+1/2
i

)
,

(4.10)

and the second identity comes from the use of (4.6). In the first identity of (4.10),

the velocity gradient at the main particle is calculated using the modified DDMP

gradient of the shape function defined in (4.6), which is the average of the DDMP

gradient of the shape function weighted by the sub-point volumes. This form is used

in our numerical calculation of the velocity gradient. The second identity shows that
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this velocity gradient can also be regarded as the sub-point volume weighted average

of the velocity gradients at the sub-points, since the quantity inside the brackets can

be identified as the velocity gradient at the sub-point located at xps.

The internal energy change due to the material deformation in the time step can

be calculated as eq. (51) in [33]

Un+1 − Un =

Np∑
p=1

Vpσp : ε̇p∆t+O[(∆t)2], (4.11)

Comparing (4.9) and (4.11), if we use velocity gradient defined in (4.10) to calculate

the strain rate, i.e. ε̇p = [∇vn+1/2
+(∇vn+1/2

)T ]/2, we can ensure energy conservation

error is second order in both the time step size and the cell size.

In this method, the information about the domain of the main particles is used

to place the sub-points, not to perform an exact calculation. The error on the de-

termination of particle domain does not affect the conservation properties of the new

method, although it affects solution accuracy. In cases of extreme deformation, where

a local linear approximation to the displacement field fails, and severe gaps or overlaps

by the parallelograms and parallelepipeds appear, to maintain accuracy one has the

option to use CPDI2, the improved version of the CPDI method [32], which ensures

no gap and overlap among the particle domains, or to directly track the position and

volume evolution of the sub-points in the calculation. For cases of complex constitu-

tive relations, if the second option is chosen, the computational cost of a sub-point

is still very small compared to that of a main particle, because the stresses on the

sub-points are not calculated directly using the constitutive relation, but copied from
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Figure 4.8 : Results calculated using the sub-point method.

their main particles. These options are left for future exploration. In this thesis we

limit ourselves to the study of the numerical properties of this new sub-point method

when applied to one-dimensional shock waves.

4.4 Results using DDMP method with sub-points

We now use the sub-points in DDMP method for the one dimensional shock problem

as discussed in Chapter 4.3. The results plotted in Fig. 4.8 are obtained by placing 2

or 4 particles per cell initially in the computational domain. Their volumes (actually,
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Figure 4.9 : Comparison of strong shock results calculated using 2 particles per cell
and 16 sub-points per particle with that obtained using 32 DDMP particles per cell
(a). Strong shock results from CPDI method using 32 particles per cell (b).

the lengths in this one-dimensional case) are updated using the velocity divergence at

the particle location xp calculated using the nodal velocity and the DDMP gradient of

the shape function, dVp/dt = Vp
∑N

i=1 vi · ∇Si(xp). Eight to 32 sub-points are evenly

placed in each of the deformed particle domains at every time step. By comparison

to Fig. 4.6, we find that the quality of the solution obtained from using this sub-point

method is equivalent to that obtained using the number of main particles equal to

the number of sub-points.

The results in Fig. 4.8 are obtained for a weak shock. In Fig. 4.9, we apply the

new sub-point method to a much stronger shock. We compare the results calculated

by initially placing 32 particles per cell using the DDMP method and the results

obtained by using only 2 DDMP particles initially in a cell with 16 sub-points per

DDMP particle. Only very small differences are observed. For the calculation with 2

DDMP particles per cell, we plot the particle distribution in the region with expanded
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Figure 4.10 : Distribution of particles in the region of expanded material in the strong
shock calculation using the DDMP method with sub-points at time 100∆x/c. Initially
two DDMP particles per cell are used. 16 sub-points per DDMP particle are used in
this calculation.

material in Fig. 4.10 at time 100∆x/c, earlier than the time 125∆x/c for Fig. 4.8. In

this region there is less than one particle per cell. In this case, the tension instability

has not happened because of the larger support of the modified gradient of the shape

functions compared to that of the shape function, a feature inherent in DDMP. To

test the limit, we also used one particle per cell in the initial particle placement. The

calculation fails around time 25∆x/c due to the tension instability.

In Fig. 4.9, the results of the CPDI method are also plotted on the right as a

comparison. The sub-figure shows that the pressure noise exists in the CPDI result,

although small relative to the large pressure difference in this strong shock problem.

4.5 Chapter Summary

The present Chapter shows that the original material point method cannot be used

for weak isothermal shocks, because of the low accuracy of the Riemann sum used in

the internal force calculation. Any attempt to increase the Riemann sum accuracy

by increasing the number of particles is met with the cell crossing noise, because the

use of more particles leads to more frequent cell crossing of the particles. Better



53

numerical accuracy in the internal force calculation can be obtained by using GIMP

and CPDI methods. However, these two methods fail to converge and generate noise

as the number of particles increases. This non-convergence is caused by the use of

a finite particle domain. As the number of particles increases, the particle domain

is decreased, and the methods reduce to the original material point method, which

suffers from cell-crossing noise. Although significant noise only occurs when a large

number of particles (> 16) per cell are used, for materials undergoing a significant

compression, the number of particles per cell can go well beyond 16, leading to a

compression instability.

The dual domain material point (DDMP) method is also used to study this simple

example. Although the method converges as the number of particles increases, an

impractically large amount of particles are needed to produce smooth results. The

cause of the lack of smoothness is identified to be the insufficient accuracy in the

calculation of the internal force integral by using the Riemann sum with a small

amount of particles. A sub-point scheme is then introduced to increase the numerical

integration accuracy. In this new scheme, the role of integration points is separated

from the particles and given to the sub-points. In this way the accuracy of the

numerical integration increases, and accurate results can be achieved with very small

number of particles using the DDMP method. In this improved DDMP method, the

sub-points can be generated and placed around the original DDMP particles at every

time step. There is no need to track their history, therefore the computational cost
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incurred by these sub-points is negligible compared to that needed for the original

DDMP particles. To place these sub-points, this new scheme needs an approximate

particle domain. In one-dimensional cases, accurately tracking a particle domain is

an easy task, but is very difficult for a multidimensional problem. In this sub-point

scheme, the particle domain is not directly used in the integration for the internal

force calculation; therefore errors, such as gaps and overlaps, of particle domains can

be better tolerated than in the GIMP and CPDI methods. Furthermore, we have

proved that placements of the sub-points do not alter conservation properties of the

DDMP method, which conserves mass and momentum exactly and conserves energy

to the second order of spatial and temporal discretization.

Although the numerical examples provided in this Chapter are one-dimensional,

all derivations are in a multidimensional form. Extension of this sub-point method

to multidimensional problems is rather straightforward. One can start from a DDMP

code, and add the parallelograms (in two-dimension) and parallelepipeds (in three-

dimension) tracking method of CPDI. Since both the DDMP and CPDI methods

have been implemented for multidimensional problems, the only additional work to

implement this sub-point method is to place sub-points evenly in the parallelograms

or parallelepipeds and to calculate Riemann sums over these sub-points.
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Chapter 5

Molecular Dynamics

Molecular dynamics (MD) is a method in which the motion of each particle is com-

puted by integrating the equation of motion i.e., Newton’s second law. An inter-

atomic potential specific to a system is defined and the forces are calculated as the

negative gradients of the potential. The first MD simulation was accomplished by

Alder and Wainwright in 1957 [35]. They used hard sphere model, where the atoms

move at constant velocity in between perfectly elastic collisions, to investigate the

phase diagrams of such system. After several years, Rahman [36] used Lennard-Jones

potential to study a number of properties of liquid argon using MD simulation. The

use of continuous potential would open up several applications of MD simulation.

Since then several pair potentials and multi-body potentials are developed to sim-

ulate more complex systems such as, diatomic molecular system, metals, polymers,

etc. The purpose of molecular dynamics calculation in this thesis work is to calculate

the closure quantities to drive the continuum level calculation.

The equation of motion for a system of N atoms can be written as

mαr̈α = fα, (5.1)

where mα is the mass of atom α, r̈α is the acceleration and fα is the force acting on
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the atom. We calculate force fα using the potential V as,

fα = −∇αV (5.2)

A typical MD simulation consists of the following principal steps:

1) Initialize all the positions and velocities of atoms.

2) Calculate force on each atoms using equation (5.2).

3) Update the position and velocities of atoms by solving eqution (5.1).

5.1 Leap frog algorithm

There are many integration schemes to solve equation (5.1). In this thesis, leap frog

algorithm is used for integration purpose. Leap frog algorithm is a second order

method with discretization error O(∆t2), where ∆t is the MD time step. In this

method, the half step velocities are updated according to the force on ith atom fα

as,

vn+1/2
α = vn−1/2

α +
fnα
mα

∆t. (5.3)

In the very first time step, the half step velocity v
1/2
α is calculated as,

v1/2
α = v0

α +
f 0
α

2mα

∆t. (5.4)

In each time step, the atomic positions are updated as,

xn+1
α = xnα + vn+1/2

α ∆t, (5.5)

where vn+1/2 is the half step velocity. If the velocity corresponding to nth step is

required to calculate statistical quantities, such as temperature of the system, vn can
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be calculated as,

vnα = (vn−1/2
α + vn+1/2

α )/2. (5.6)

A few advantages of using leap frog algorithm include, it is symplectic, time

reversal and it conserves angular momentum exactly [37].

5.2 Periodic boundary conditions

In this thesis work , molecular dynamics simulation seeks to compute closures of

the system using statistical average which usually requires a large number of atoms.

It is impractical to simulate entire computational domain of interest (order of 1023

atoms). We can only simulate relatively small number (N ≈ 103 − 107) of atoms.

This introduces the problem of surface effects, where a significant number of atoms

reside on the surface. For example, for a cubic simulation box containing 1000 atoms,

about half of them will be on the surface. The periodic boundary condition is widely

used to overcome the surface effect problems. In periodic boundary condition, it is

imagined that the MD simulation box is replicated to infinity by rigid translation

through out the space to infinite domain. In our multi-scale numerical method, we

calculate closure quantities using MD simulation in a small representative volume of a

material point. We use periodic boundary condition to eliminate any surface effects.

Figure (5.1) shows an illustration of periodic boundary condition in two dimen-

sions. The atoms corresponding to each color are replicated through out the space.



58

Figure 5.1 : Periodic boundary condition in 2 dimensions

In periodic boundary condition, each particle inside a box is interacting not only with

the other particles inside the same box, but also with their images in the neighbor

boxes. Also, after each integration step, the coordinates of the atoms are examined.

If any atom lies outside the periodic box, the coordinate of the atom is adjusted to

bring it back to the simulation box. For example, in one dimension, suppose the

simulation domain extends from −L/2 to L/2. If the coordinate r ≥ L/2, bring the

atom back to r − L. Similarly, if r ≤ −L/2, bring the atom back to r + L.

In this thesis work, the communication between the macroscopic system and the

molecular dynamics system is through the strain rate and stress. In every MD time

step, using the strain rate ε̇(xp, t), calculated from DDMP calculation for the macro-
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scopic time t and material point p, we update the periodic domain length in the

x−direction as

Ln+1
px = Lnpx[1 + ε̇xx(xp, t)(∆t)md], (5.7)

where Lpx is the periodic domain length in x−direction and ε̇xx is the xx− component

of the strain rate tensor. Similarly, the periodic domain sizes in y and z- directions

are updated using ε̇yy and ε̇zz. To ensure all atoms are within the periodic domain,

atoms left from one side of the periodic domain are put back through the other side.

More precisely, the atom locations are further updated using x∗α from (5.5). For the

x- coordinate we use

xn+1
α =

(
x∗α +

Ln+1
px

2

)
mod(Ln+1

px )− Ln+1
px

2
, (5.8)

and similarly for y and z- coordinates. If there is a velocity gradient in x- direction, if

xn+1
α 6= x∗α, then velocity (xn+1

α −x∗α)ε̇xx(xp, t) is added to the full-step velocity vnα and

the half-step velocity v
n+1/2
α of the atom. Similar velocity adjustment is performed if

there is velocity gradient in y or z- direction.

If there is a shear strain, the periodic MD box can change the shape and no longer

remains rectangular. It is almost impossible to apply periodic boundary condition

for such non-rectangular shaped box. In our calculation, we keep the shape of the

MD box, called fundamental box, rectangular all the time. In periodic boundary

condition, a particle in the fundamental box represents all of its image particles. To

ensure the fundamental box contains one and only one of the particle or its image,
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we first assume that the velocity gradient tensor takes the following form
gxx gxy gxz

0 gyy gyz

0 0 gzz

 , (5.9)

where g′s are the components of velocity gradient tensor.

In periodic boundary condition, the coordinates of images of a particle can be

written as, 
xi(t)

yi(t)

zi(t)

 =


x0(t) + nxLx(t)

y0(t) + nyLy(t)

z0(t) + nzLz(t)

 , (5.10)

where xi(t) is x- coordinate of images at time t, x0(t) is x- coordinate of particle

inside the fundamental box at time t, nx is an integer, Lx(t) is the x-length of the

MD box at time t and similarly for y and z- components.

Using the velocity gradient tensor from equation (5.9), the co-ordinates of images

at later time t+ ∆t become,
xi(t+ ∆t)

yi(t+ ∆t)

zi(t+ ∆t)

 =


gxx gxy gxz

0 gyy gyz

0 0 gzz




xi(t)

yi(t)

zi(t)

 . (5.11)
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Here,

zi(t+ ∆t) = gzzzi(t) (5.12)

= gzz(z0 + nzLz(t)) (5.13)

= gzzz0 + nzLz(t+ ∆t). (5.14)

Since nz is an integer and Lz(t + ∆t) is the updated z-length according to equation

(5.7), there exists a unique nz such that zi(t+ ∆t) ∈ [−Lz/2, Lz/2).

Similarly,

yi(t+ ∆t) = gyyyi(t) + gyzzi(t) (5.15)

= gyy(y0 + nyLy(t)) + gyz(z0 + nzLz(t)) (5.16)

= nyLy(t+ ∆t) + (gyyy0 + gyzz0 + nzgyzLz(t)). (5.17)

For a fixed nz, the terms inside the parenthesis are fixed. Using the similar argu-

ment for z-component as above, there exists a unique ny such that yi(t + ∆t) ∈

[−Ly/2, Ly/2). Similarly, we can show that there exists a unique nx when nz and

ny are fixed such that xi(t + ∆t) ∈ [−Lx/2, Lx/2). This proves that if the velocity

gradient tensor is in the form of equation (5.9), it is ensured that there is always one

and only one image of a particle (or particle itself) inside the MD box.

As shown in figure 5.2, a rectangular domain can be deformed into a parallelogram

if the non-diagonal terms of the velocity gradient tensor are non-zero. Instead of using

parallelogram, the domain is kept rectangular. For any atoms who are left outside

the rectangular domain due to this transformation such as atom x in figure 5.2 is
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Figure 5.2 : The periodic boundary condition used to address shear deformation.
The periodic domain is kept rectangular. For any particle x outside the rectangular
domain is discarded and the image of x (i.e., y) is tracked.

discarded and its image (y) inside the rectangular box is tracked. This ensures the

number of atoms inside the fundamental box remains constant.

However if there is an non-zero element in the lower triangle of equation (5.9), this

property can not be guaranteed. As a counter example, let us consider an example

of pure shear in 2D where the deformation gradient tensor is,0 γ

γ 0

 , (5.18)

where γ is the shear strain. As shown in figure (5.3), a rectangular box is deformed

to a parallelogram (dotted lines). After deformation, particle x shifts to x′. Also

the image of x (i.e., y) shifts to y′ after deformation. Since the diagonal elements of

velocity gradient tensor are zero, according to equation (5.7), the fundamental box

does not change. Both x′ and y′ are inside the fundamental box. In this way, total

number of particles inside the MD box will not remain constant.

Equation (5.9) is a special case of gradient of velocity. Generally, the velocity
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Figure 5.3 : Periodic boundary condition used for pure shear deformation. The
particle and its image can both be inside the rectangular box.

gradient tensor has the following form,

∇v =


dvx
dx

dvx
dy

dvx
dz

dvy
dx

dvy
dy

dvy
dz

dvz
dx

dvz
dy

dvz
dz

 . (5.19)

We wish to convert the velocity gradient tensor to the form of upper triangular

matrix as in equation (5.9). To achieve this, we add a rotational tensor to the velocity

gradient tensor,

∇v′ =


dvx
dx

dvx
dy

dvx
dz

dvy
dx

dvy
dy

dvy
dz

dvz
dx

dvz
dy

dvz
dz

+


0 dvy

dx
dvz
dx

−dvy
dx

0 dvz
dy

−dvz
dx
−dvz

dy
0

 =


ε̇xx 2ε̇xy 2ε̇xz

0 ε̇yy 2ε̇yz

0 0 ε̇zz

 , (5.20)
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where we used the definition of strain rate, for e.g., the xy- component is defined as

ε̇xy = 1
2

[
dvx
dy

+ dvy
dx

]
. Adding a rotational tensor is equivalent to using a rotational

frame of reference. We assume that this addition of rotational tensor does not af-

fect stress calculation for fairly general cases except for problems involving extreme

shear deformation where the non-inertial effects become important. The examples

considered in this thesis work do not involve high shear strain rate even though the

normal component of strain rate can be extreme. Further examination of validity of

this method for high shear strain rate problems are left for future study.

5.3 Embedded atom method

The use of pair potential where the interaction between a pair of atoms is indepen-

dent of the surrounding atoms, is a popular choice for potential in MD simulation.

One example is the well-known Lenard-Jones potential. But in metals, the valence

electrons can be shared among many atoms. The pair potential itself will not be

enough to capture the physics of metallic bonding. The embedded atom method

(EAM) potential [38, 39] takes into account the effect of electron density surrounding

an atom, thereby, incorporates the many-body effect among atoms.

The total energy of a system in EAM method can be written as

E =
1

2

∑
α,β
α 6=β

φ(rαβ) +
∑
α

F (Γα), (5.21)

where the first summation is over all atom pairs, φαβ is the pair potential, rαβ is the

distance between atoms α and β, F is the embedding energy as a function of host
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electron density Γα. The embedding energy term represents the many-body effect.

The host electron density can be written as the sum of the electron densities γ(rαβ),

Γα =
∑
β(6=α)

γ(rαβ). (5.22)

In this thesis, instead of using analytical form of potential, a tabulated potential

is used. In the study of cerium metal, a tabulated potential generated by Sheng et

al. [40, 41] has been used. For EAM potential of copper, we use the potential data

developed by Mishin et al. [42] in tabulated form. The potential data consists of three

tables, Fα as a function of Γα, γ(rαβ) and φ(rαβ) as functions of rαβ. If necessary, the

data are interpolated using Lagrangian interpolation. By differentiating this energy,

we can calculate total force acting on atom α as [43]

fα = −∇αE, (5.23)

where ∇α denotes the gradient acting on the position of the α-th atom.

5.4 Stress calculation using EAM method potential

To calculate stress in the periodic computational domain while avoiding errors related

to the interaction pairs near the boundary of our MD domain, we use pair interaction

forces and the first line of (2.25). This is similar to [10], but without the time

averaging. As shown in (2.25), such calculated stress is consistent with virial stress

expression of the Cauchy stress, which is independent of force decomposition in the

limit of continuum mechanics in a thermodynamic equilibrium. In EAM method
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Figure 5.4 : Stress-strain Relation of Cerium at different temperatures. The strain
used in this figure is the engineering strain εexx = (Lnpx − L0

px)/L
0
px.

potential, the pair interaction force between a pair of atoms is calculated as [43, 44]

fαβ = −
[
∂φ(rαβ)

∂rαβ
+
∂F

∂Γi

∂γ

∂rαβ
+
∂F

∂Γj

∂γ

∂rαβ

]
rαβ
rαβ

. (5.24)

The pair interaction force in equation (5.24) satisfies the Newton’s 3rd law i.e., fαβ =

−fβα. So fαβ defined in equation (5.24) can be used for stress calculation [27]. In

our simulation the molecular dynamics calculations are performed on a GPU. With

such pair interaction force, the stress calculated is passed to CPU, which performs

the continuum DDMP calculation as described in the previous chapter.

To confirm that such calculated stress is in agreement with the classical concept of

stress in elasticity theory for continuum mechanics, in Fig. 5.4 we show stress-strain

relation for cerium at initial temperatures of 0 K, 300 K, and 600 K. The results are
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obtained using 256 atoms and 500 atoms in the periodic domain with initial domain

sizes of 20.5Å and 25.7Å. These results are obtained by imposing strain rates 108

1/s and 109 1/s to the system using time step (∆t)md = 1 fs in the MD simulation.

Time step (∆t)md = 1 fs is about 1% of the phonon period for cerium [45]. For

cases of nonzero initial temperature, according to the initialization process, at zero

strain (undeformed crystal with lattice constant 5.132Å), there is a small stress due

to thermal fluctuations. The stress plotted in Fig. 5.4 has been offset by this stress to

ensure that the curve passes the origin in the figure. Other than small fluctuations,

for a given initial temperature, the stress-strain relation is insensitive to the number

of atoms and the strain rates used in our MD simulations. The Young’s moduli can

be calculated from the slopes of the curves at zero strain in this plot and are found

to be 16.9 GPa at temperature 0 K and 25.6 GPa at temperature 300 K, compared

to the value of 25.3 GPa at 300 K obtained by Sheng et al. [40, 41].

5.5 Molecular dynamics in GPU

The increasing computing power of Graphics Processing Units (GPU) has opened

up many possibilities of using GPUs, not only for graphics purpose but also for

high performance computing. For GPU based software development, there are many

graphics-oriented languages such as CUDA, OpenGL, Cg, etc. The CUDA language

is based on standard C and makes it easy for users who are already familiar with

C or C++. In our numerical experiments, the molecular dynamics calculations are
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performed in GPU using CUDA. Since the molecular dynamics calculations are per-

formed to calculate the ensemble averaged quantities, such as stress in our model, the

MD simulation in GPU is performed with single precision to achieve higher speed up.

To perform MD simulation in parallel, there are basically three different methods

[46]. The first is atom decomposition method, where each processor is assigned to

N/P atoms when simulating N atoms on P processors. In this method, each processor

computes forces and update the positions and velocities of the assigned atoms. The

second is domain decomposition method. The computational domain is divided into

different blocks and those blocks are assigned to different processors. Each processor

computes forces on the atoms in its block and also tracks if any atom entered or left

the block. The third is force decomposition method, where rather than assigning a

processor to compute all forces in N/P atoms as in the atom decomposition method,

each processor is assigned to calculate a block of the force matrix. The force matrix

is N ×N matrix with all the pair interaction force information.

The most computationally expensive part of any MD simulation is the force cal-

culation. For a system of N atoms, it typically requires N(N − 1)/2 operations. For

short range forces, there are different algorithms to achieve near O(N) operations

for force calculations. In neighbor list method, we create a list of neighbors for each

atom with a radius of slightly more than cutoff distance (rc + ∆r) corresponding to

that potential. The calculation of force experienced by an atom α involves searching

through all the atoms in its neighbor list instead of searching all the atoms in the com-
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Figure 5.5 : Atoms in uniform grids. The atoms are later sorted according to the
uniform grids.

putational domain. The neighbor list must be updated before any atom can travel a

distance ∆r. Although this method is very efficient, the memory requirement is high

since each atom will have several atoms in the list. The large memory requirement

makes this method not suitable for GPU. Another widely used algorithm is the linked

list method, in which the spatial domain is divided into many cells of length equal

to or slightly larger than rc. For each cell, a linked list of atoms is created in every

time step. The creation of linked list requires O(N) operations. To calculate force,

for each atom, the atoms in the same cell and the neighbor cells are examined. For

example, there will be 27 cells to be examined in 3D. This method is slightly more

expensive than the neighbor list method since the search volume is greater. Even
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though this method does not require additional memory, looping through the linked

list is not ideal for parallel computation.

The algorithm implemented in this thesis to perform MD simulation is similar to

what described in [47] for any particle simulation. Similar to domain decomposition

method, the computational domain is subdivided into uniform cells. The size of the

cells is equal to the cutoff radius (rc) corresponding to the inter-atomic potential.

Then for each atom, its cell ID is calculated based on its position. Figure 5.5 depicts

the way the atoms are assigned to the cells corresponding to their positions. The

atoms are sorted based on their cell ID. For sorting we use sort by key function of

CUDA thrust library. This function creates a list of atom IDs in cell order. To make

the sorted list useful, we find the start and end address of any given cell in the sorted

list. For example, in order to find the start address of a cell, the cell ID of current

atom with the previous atom is compared. If the cell IDs are different, this indicates

the start of a new cell. Now reorder the position and velocity arrays of all atoms into

sorted order. This step is optional, but this improves the memory access coherency

since the atoms close in space tend to be closer in memory address. Finally, the force

calculation is performed by searching neighbor atoms in the neighbor cells.
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Chapter 6

Shock waves simulated using the dual domain

material point method combined with molecular

dynamics

In this chapter we use a one-dimensional strong shock propagation in cerium single

crystal to demonstrate the feasibility of the proposed multi-scale method. This multi-

scale method is based on the dual domain material point method. The continuum

level calculation is performed using DDMP method. Instead of using constitutive

relation, we perform molecular dynamics (MD) simulations to calculate stress in the

material points. In this multi-scale computation, each material point is a MD system.

The MD systems communicate with the continuum level calculation through strain

rate and stress. The strain rate calculated from the DDMP calculation are used as

a boundary condition to constrain the MD system, and the stress obtained from the

MD simulation is used to drive the DDMP calculation. Since the material points do

not need to communicate among each other, the MD simulations are performed in

parallel in GPU using CUDA to accelerate the computation. Figure 6.1 outlines the

multi-scale calculation method used in this thesis.
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Figure 6.1 : Schematic diagram of the multi-scale method

6.1 Continuum level calculation

For continuum level calculation, we use DDMP method with subpoints as described in

chapter 4.3. The DDMP method can be used to compute large material deformation,

provided the stresses at the material points can be obtained. We study a method of

performing macroscopic simulations for systems far away from their thermodynamic

equilibriums by computing these stresses directly from molecular dynamics simula-

tions at each material point. We take the advantage that the material points are

Lagrangian points. These material points are tracked throughout the computation so

that the history of the material can be considered in the stress calculation. In these
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types of calculations, the stress evaluation at material points is expensive. To reduce

the number of material points needed, while having sufficient numerical accuracy in

the DDMP internal force calculation, the recently developed sub-point algorithm as

described in chapter 4.3 [48] is used. The algorithm exploits the difference between the

stress variation length scale, which is the macroscopic length scale Lm, and the length

scale of the gradient of the shape function, which is the typical mesh size ∆x. As

illustrated in Fig. 4.7, in a meaningful calculation, the typical mesh size ∆x << Lm.

The stress varies much slower than the modified gradient ∇Si of the shape function.

To ensure numerical accuracy in the internal force calculation, we split a material

point, or particle, into many integration points, called sub-points. The values of ∇Si

are evaluated individually on these sub-points to account for rapid variation of the

modified gradient of the shape function, while the sub-points belonging to the same

particle share the same stress. These sub-points can be generated at each time step

around a particle. They are introduced purely to account for variations of ∇Si and do

not carry any physical information; therefore there is no need to track the history of

these sub-points. As in the ordinary material point methods, the history information

is carried by the particles. The MD simulation to calculate stresses are performed for

the particles not for sub-points. Since the generation and calculation associated with

these sub-points are very cheap compared to the stress calculation on the particles,

a large number of sub-points can be used without incurring too much computational

cost. As shown in chapter 4.3 [48], the numerical accuracy of this sub-point algorithm



74

is very close to the DDMP calculation as if using the same number of particles instead

of sub-points. This sub-point DDMP method is equivalent to further replacing the

gradient of the shape function in (3.31) by

∇Si(xp) =
1

nps

nps∑
s=1

∇Si(xps), (6.1)

where nps is the number of sub-points for material point p, and xps is the position of

a sub-point, which is generated around the material point at each time step. In this

way, the internal force in (3.31) is calculated by

f inti = −
∫

Ω

σ · ∇Si(x)dv ≈ −
Np∑
p=1

Vpσp
nps

·
nps∑
s=1

∇Si(xps). (6.2)

Sub-point algorithm is described in details in chapter 4.3 [48]. To ensure energy

conservation (to the second order of the spatial and temporal discretization), the

velocity gradient at a particle, which is used to calculate stress, also needs to be

computed using new gradient of the shape function as

∇ṽ(xp, t) =

Ng∑
i=1

ṽi(t)∇Si(xp) =

Ng∑
i=1

ṽi(t)

nps

nps∑
s=1

∇Si(xps). (6.3)

6.2 Molecular dynamics simulation of Cerium

Although the continuum problem is in one dimension, the MD calculation is per-

formed in a three-dimensional periodic domain to minimize the effects of boundary

[11, 10, 12]. In the MD calculation, the Embedded Atom Method (EAM) [38, 39]

potential is used. The EAM method potential as well as the integration scheme and
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Figure 6.2 : Total energy per atom as a function of lattice constant for Cerium crystal

the boundary condition for MD is described in chapter 5. In this study of cerium

metal, a tabulated potential generated by Sheng et al. [40, 41] has been used.

At the beginning of our calculation, one molecular dynamics (MD) system is

generated for each material point. To initialize the MD systems, we first place

Cerium atoms in the cubic periodic domains [−L0
px/2, L

0
px/2] × [−L0

py/2, L
0
py/2] ×

[−L0
pz/2, L

0
pz/2] with L0

px = L0
py = L0

pz, according to face center cubic (FCC) array.

The lattice constant of the arrays is set to the value (5.132 Å) where the potential

energy E is the minimal. The periodic length is a multiple of this value. To specify

initial engineering strain εe0xx(xp) of the material point in the MD system, for our

one-dimensional macroscopic problem, the x−coordinate of the atoms and x−length

(L0
px) of the periodic domain are multiplied by 1 + εe0xx(xp).

To set nonzero initial temperature in the system, the velocities of the atoms are set
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randomly according to the Maxwell distribution with their magnitudes corresponding

to twice the intended initial temperature, and the velocity directions are set according

to uniform distribution in the solid angles. The final procedure in the MD system

initialization is to relax the system to its thermodynamic equilibrium. In this pro-

cedure the equation of motion for atoms are solved as describe below, but with the

strain rate set to zero. According to the virial theorem, which is numerically verified,

in our cases the total initial kinetic energy is split equally between the kinetic energy

and the potential energy among the atoms at the thermodynamic equilibrium; there-

fore, the relaxed system has the temperature of the intended value. The MD systems

are assumed adiabatic in our simulations after this temperature initialization. This

initialization of the MD system is done once and only once for every material point

in the computation. The MD systems are never re-initialized, and their histories are

preserved in the present work. The end states of the MD systems of the previous

DDMP time step are the initial states for the MD calculations in the next DDMP

time step. The only difference in the MD simulations in two consecutive DDMP time

steps are the velocity gradients, or the strain rates, used to update the sizes of the

periodic computational domains. We use the leap frog algorithm to advance the MD

systems as described in chapter 5.1.

The method presented in this work is intended to resolve the effects of thermody-

namic nonequilibrium in macroscopic problems, where the time scale of the macro-

scopic strain rate is comparable to the thermodynamic relaxation time. We have no
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choice but to use time steps in the continuum DDMP calculation much smaller than

the time scale of the strain rate. Clearly, this method should not be used directly for

problems in which the strain rate is small compared to the inverse of the thermody-

namic relaxation time. For such systems, for each continuum DDMP time step, we

only need to perform sufficient MD time steps for each of the MD systems to reach its

local thermodynamic equilibrium [49], then perform a time average and extrapolate

the stress to be used in the continuum DDMP time step. In this limit this method

reduces to category B of the HMM as described by [10, 11, 12]. The only difference

is then in the continuum solvers. The finite element and the finite volume methods

are used in [10, 11], while we use the DDMP method, which is more advantageous if

the history dependence and large material deformation is of concern.

The stress calculation method in the periodic computational domain correspond-

ing to each material point is described in chapter 5.4.

6.3 Numerical Results and Discussion

In this section we explore the numerical properties of the multiscale calculation de-

scribed above. Since the main purpose of this work is to study a numerical method

to perform multiscale calculations, instead of improving the MD method or the EAM

potential used in our calculations, we compare our results from our multiscale simula-

tions to those obtained from the direct MD simulations, rather than to experimental

values. We study a one-dimensional cerium bar of length about 500 nm. Although
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the multiscale method described in the present work can be used to compute macro-

scopic problems, we limit our comparison with the MD results to this small length

because of length limit of the MD simulations. Initially, the left half of the bar is

compressed to a specified strain and held. In the combined MD-DDMP simulation,

after properly initializing densities on mesh nodes, the MD systems for the material

points are initialized with the initial strain and temperature as described in the last

section 6.2. Initialization of the direct MD simulation is similar. Atoms are placed in

the computational domain according to FCC array. In the direct MD calculation we

use periodic boundary condition in y and z directions and reflective boundary condi-

tion on both ends of the cerium bar. There are 12 lattices in the y and z directions

and 1200 lattices in the x direction. To specify an initial engineering strain εe0xx in

left half of the bar x−distance between atoms on the left is adjusted by a factor of

1 + εe0xx.

At the time t = 0, the hold is released causing a compression shock to propagate to

the right and a rarefaction wave to propagate to the left. In the direct MD simulation,

the equations of motion for the atoms are solved as described in the chapter 5.1. To

calculate the stress from this direct MD simulation, the entire MD domain is divided

into 100 sections along the x−direction. We then treat each section as a representative

volume, and use the first line of equation (2.25) to calculate the stress in this section.

For DDMP and combined DDMP-MD calculations, the computational domain

consists of 400 cells for the results shown in Figs. 6.3 to 6.8. To avoid difficulty
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associated with the initial discontinuity, as in many particle based methods [50, 51],

we use a hyperbolic tangent function to smooth it across 26 cells, with 13 cells on

each side of the initial discontinuity. As shown in Figs. 6.3 in the case of weak shock,

the shock front is broadened to about 50 cells for both the continuum DDMP and the

multiscale MD-DDMP calculations due to artificial viscosity. In this work the pressure

from the artificial viscosity only involves the linear term 0.5ρcs|∆v| [52], where ρ is

the density of the material point, cs is the sound speed. The artificial viscosity is

applied only if the strain rate is negative. Using the same artificial viscosity for

strong shocks, shock front is only broadened by 4 cells to total of 17 cells for the

multiscale MD-DDMP calculation and is broadened by 29 cells to total about 42 cells

for the continuum DDMP calculations as shown in Figs. 6.4 to 6.9.

Figure 6.3 shows the comparison among the results from the full MD simulation

using about 1.1 million atoms, the continuum DDMP calculation using 400 equal cells

with initially 1 material point per cell and 8 sub-points per material point [48], and the

multiscale DDMP-MD simulation with the same number of cells and material points

as in the DDMP calculation. For this case of moderate initial compressive strain of

0.5%, corresponding to about 0.164 GPa compressive stress on the left, although the

combined DDMP and MD simulation result is slightly closer to the MD calculation,

the overall results are in good agreement with each other.

Using the same numerical arrangement, we calculated a case with ten times higher

initial compressive strain of 5.0 %, corresponding to compressive stress 2.3 GPa, on
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Figure 6.3 : Shock wave propagation for weak shock at 0 K initial temperature
calculated using 400 cells with 1 material point per cell and 8 sub-points per material
point.

the left of the bar. The results are shown in Fig. 6.4. In this figure, the continuum

DDMP results deviate from the MD results showing smaller wave speeds for both

the compression and rarefaction waves. The deviation is not caused by the DDMP

numerical method, but rather by the constitutive assumption about the linear elas-

ticity of the material. The multiscale DDMP-MD results are much closer to the MD

results, especially in the center region of the figure. In this region, the material is

significantly perturbed by the compression or rarefaction wave, and is not in the ther-

modynamic equilibrium. Such thermodynamic nonequilibrium is not considered in

the linear elastic model used in the DDMP calculation, resulting the difference be-

tween the DDMP and MD results. The effect of this thermodynamic nonequilibrium
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Figure 6.4 : Propagation of strong shock at 0 K initial temperature calculated using
400 cells with 1 material point per cell and 8 sub-points per material point.

is captured in the MD simulation performed at each material point leading to good

agreement between the results from the MD and the DDMP-MD combined multiscale

calculations. In this figure, we also show the combined DDMP-MD results obtained

from different number of atoms in a MD system. There are only slight differences

between the results by using different number of atoms.

Figure 6.5 shows similar calculation for a case with 300 K initial temperature.

In this figure, again the multiscale DDMP-MD result is very close to that from the

MD simulation. In this figure the comparison between the continuum DDMP result

and the MD results is much better than in Fig. 6.4, because compared to the system

starting from zero absolute temperature, the system with a finite temperature relaxes
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Figure 6.5 : Propagation of strong shock at 300 K initial temperature calculated using
400 cells with 1 material point per cell and 8 sub-points per material point. In the
combined DDMP-MD results, stresses at material points are obtained from the MD
simulations using 256 and 500 atoms per material point.

faster to its thermodynamic equilibrium, where the continuum theory provides a good

approximation. This is also the reason for good agreement among all the results in

Fig. 6.3 since the system was never far away from thermodynamic equilibrium for

the weak shock. Figure 6.5 also shows noise in the stresses obtained from both the

direct MD and DDMP-MD combined calculations. This noise can be reduced by using

larger number of atoms in both calculations. The result obtained using 500 atoms per

material point is less noisy than that obtained using 256 atoms per material point.

These results show that even with small number (256 or 500) of atoms in our MD

simulation for each material point, the results still capture the significant effects of

thermodynamic nonequilibrium with reasonable accuracy. In this calculation, for the
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unperturbed material on the right, the initial stress is negative because of velocity

fluctuations of the atoms as represented by first term in (2.25) for this case of finite

temperature.

In Figs. 6.3, 6.4 and 6.5, the entire domain MD results are obtained from calcula-

tions performed in parallel on a NVIDIA Tesla K20 GPU. Each took about 6 hours.

The MD calculations for the multiscale DDMP-MD method are also performed on the

GPU, whereas the continuum scale calculations are performed in a CPU. The DDMP-

MD calculations took about 15 minutes each, and the continuum DDMP calculation

took only a few CPU seconds. We use the time steps of 500 fs in the DDMP calcula-

tions, while the time step for the MD simulation is 1 fs. The 500 fs time step in the

continuum part of the simulation corresponds Courant number about 0.8, depending

on the wave speed, which varies during the calculation. For the combined DDMP-MD

calculation, the stress used in the continuum DDMP calculation is calculated using

(2.25) at the last MD time step immediately before the continuum time step. As

another option one can also use the average stress calculated at each MD time step.

The difference shown in Fig. 6.6 is not significant, but the computation cost differs

remarkably. Since the stress calculation requires global sum over the atom pairs,

which cannot be performed effectively in parallel on a GPU, the calculation using the

average stress is about 1.8 times slower than the method that simply evaluates the

stress at the last time step of the MD simulation before the DDMP calculation. For

this reason, the latter method is used to obtain the results reported in the rest of the
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Figure 6.6 : Comparison of results from using the stress calculated from one MD time
step stress and using the average stress over the one DDMP time step for cases of 0
K initial temperature.

present work.

To study numerical properties of the combined DDMP-MD simulation, without

the contamination of the noise from thermal fluctuations, in the following, we use sys-

tems with initial temperature of absolute zero to study the effect of artificial viscosity,

the effect of the number of material points, and mesh sizes used in the calculation.

The effect of artificial viscosity is shown in Fig. 6.7. Artificial viscosity is needed to

suppress the Gibbs phenomenon near the compression wave front.

In DDMP calculation, we place a number of material points in cells evenly at

the beginning of a calculation. The results shown in Fig. 6.8 are obtained with

different number of material points in such placement. Because the material points
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Figure 6.7 : Effects of artificial viscosity for cases of 0 K initial temperature.

are Lagrangian, they move with the material leading to increase or decrease of the

number of material points in the cell during the calculation. The number of material

points per cell in the figure only refers to the initial placement of the points. In the

figure, we compare the results obtained by initially placing 1 material point per cell

to that obtained by initially placing 8 material points per cell for the case of strong

shock. The result from using 1 material point per cell is noisier as can be seen in the

sub figure. The noise is a result of low accuracy of the numerical integration scheme

used in the material point method. By using the sub-point algorithm [48], the noise

can be significantly reduced. In Fig. 6.8, we also plot the result obtained using 1

material point per cell and 8 sub-points per material point. This result is barely
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temperature..

different from the result obtained using 8 material points per cell. The CPU times

are about 15 minutes for the two calculations using 1 material point per cell with or

without using the sub-points. These results show that the use of sub-points leads to a

significant speedup compare to the time needed for calculation using 8 material points

per cell, which took about 110 minutes, without sacrificing the numerical accuracy.

The use of sub-points is especially advantageous in this multiscale calculation, where

stress evaluation at the material points is expensive.

In Fig. 6.9, we show effects of cell size on this multiscale calculation. This shows

the results converge to the correct solution as mesh is refined. The results of the

shock propagation calculated in this work are in a very small (500 nm) domain. This
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Figure 6.9 : Effect of mesh size in shock propagation at 0 K initial temperature
calculated with 1 material point per cell and 8 sub-points per material point.

small domain is chosen because we want to compare our multiscale calculation with

the MD calculation. While the MD calculation is restricted to a small domain, the

combined DDMP-MD simulation is not because there is no difference in the stress

calculation method when this combined DDMP-MD is used for much larger domains.

A significant advantage is that this method can be used in a large domain. It can be

used to simulate thermodynamic nonequilibrium phenomena involving large spatial

domains instead of limited to some special areas, such as phase interfaces or crack

tips [53, 54, 55]. To further develop this method and to consider effect of crystal

defects, such as twinning and dislocation, large MD systems for the material points

are needed.



88

The continuum level time step size (500 fs) used in the present paper is quite

small for a typical continuum scale calculation. However, we do not think this is a

significant issue preventing the application of this multiscale method for the following

reasons. If, in the systems of interest, the effect of thermodynamic nonequilibrium

is important, physical interactions at this small time scale have to be resolved to

capture the nonequilibrium effects. Fortunately, for most macroscopic problems, the

system relaxes to a thermodynamically equilibrium state quickly compared to the

macroscopic time scale. After that time if the constitutive relation or the equation of

state for the material is available, this multiscale method is no longer needed. In cases

where the the constitutive relation is not available even in the thermodynamically

equilibrium state, one can explore the time extrapolation methods [10, 12] by only

performing this multiscale simulation in selected time intervals.

6.4 Chapter Summary

By taking advantage of the unnecessity of communication among the material points,

an efficient multiscale simulation method is developed based on the dual domain

material point (DDMP) method. In this method, the stresses on each material point

are calculated independently without a need to communicate with other material

points. The material points only communicate with mesh nodes. For problems,

where the traditional constitutive relations are not available, we perform molecular

dynamics (MD) simulation to obtain the stress and use it in the continuum scale
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DDMP calculation. Because no communication among material points is required,

in this method, the MD simulations are performed independently and in parallel on

a GPU.

The choice of the DDMP method is based on its capability of tracking material

deformation history for cases involving extreme material deformations, which are

often accompanied by high strain rates, where the assumption of thermodynamic

equilibrium becomes invalid, and history dependence becomes important. In the

DDMP method, especially with the recent enhancement using sub-points, the noise

caused by material points moving across cell boundaries is suppressed, and highly

accurate results can be obtained.

Compared to other multiscale methods, this method has an advantage in its ca-

pability of simulation a macroscopic domain because each material point is treated

as a representative piece of the material that moves and deforms with the material,

and carries the history with it.



90

Chapter 7

Modeling of jet formation around copper notch

using dual domain material point method

combined with molecular dynamics

In the previous chapter, we used a one-dimensional shock wave propagation in cerium

single crystal to demonstrate the viability of the multi-scale method based on dual

domain material point method. In this chapter, we use the phenomena of jet for-

mation around a notch of a copper crystal due to a strong impact as an example

to better validate our new multi-scale computation method intended for modeling

extreme material deformation and thermodynamic non-equilibrium. Also, in this ex-

ample, the DDMP method is used for continuum level calculation and the stress in the

material points are calculated using MD simulation. The MD systems communicate

with the continuum level calculation through the strain rate and stress tensors. The

strain rate calculated from the DDMP calculation are used as a boundary condition

to constrain the MD system, and the stress obtained from the MD simulation is used

to drive the DDMP calculation. We take advantage of the property of the DDMP

method that the material points do not need to communicate among each other in

order to perform MD simulation in parallel. The MD simulation in each material

point is performed in GPU using CUDA to accelerate the computation. The results
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Figure 7.1 : Initial configuration of the copper crystal sample with a piston and a
notch

obtained from the multi-scale calculation are compared with direct MD simulation

results. First we discuss the direct MD simulation methodology.

7.1 Molecular dynamics simulation of jet formation of copper

We consider a sample of a block of copper single crystal with a groove of depth h on

one edge as shown in figure 7.1. A shock wave is generated along the length of the

copper using momentum mirror method where the copper crystal is struck into a rigid

block at rest with an impact velocity vp along the shock direction. The shock wave

starts propagating along the length of the crystal away from the piston. After the

shock wave reaches the groove, the interaction of planar shock wave with the groove

causes the material around the groove to form a jet shooting outward. After some

time the jet can eventually break up to form ejecta.
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Figure 7.2 : Total energy per atom as a function of lattice constant for copper crystal

The Embedded Atom Method (EAM) potential [38, 39], as described in chapter

5.3, is used for MD calculation. For EAM potential of copper, we use the potential

data developed by Mishin et al. [42]. The description of how to perform molecular

dynamics simulation is in chapter 5.

To initialize the MD simulation, copper atoms are placed in the 3D computational

domain to form a perfect face centered cubic (FCC) crystal structure. Similar to the

cerium crystal in the previous chapter, the lattice constant is set to the value where

the potential energy is minimum. Figure 7.2 depicts the relationship between lattice

constant and total energy per atom for copper single crystal at temperature of 0 K.

The minimum energy corresponds to lattice constant (a0) = 3.615 Å with cohesive
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energy -3.54 eV/atom. In this experiment, the x−direction length of the sample

is 144 nm corresponding to 400 lattice cells, which also includes the rigid block of

size 14.4 nm. For simplicity, the rigid block is also chosen to be made up of copper

single crystal. The y−direction length of the sample is 72 nm corresponding to 200

lattice cells. Although the problem of interest is 2-dimensional, the MD simulation is

performed in a 3-dimensional box with 10 lattice cells along z−direction. A triangular

notch is created with depth h = 36 nm as shown in figure 7.1. To create the notch,

the atoms in that region are simply removed. To set up a finite temperature, the

velocities of the atoms are randomly initialized according to Maxwell distribution for

their magnitudes corresponding to twice of the desired temperature. After few time

steps, the temperature of the system will relax to the desired temperature. In this

experiment, the initial temperature of the sample is set to 10 K before shock loading.

In this typical calculation, there are about 2.8 million atoms in the simulation box.

Periodic boundary conditions are used in y and z−directions, where in x− direction

corresponding to the shock direction, no such boundary condition is used. The time

step used for MD is 1 fs. The MD calculation is performed in NVIDIA Tesla K20

GPU using CUDA as described in chapter 5.5.

At time t = 0, the atoms in the sample are given an initial velocity up = -2.5

km/s in x− direction with the atoms in the rigid block at rest. A planar shock wave

starts propagating through the copper crystal. To calculate stress field and any other

statistical quantities, the sample block is divided into 400× 50 two-dimensional bins.
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Figure 7.3 : The color plots of σxx component of stress field. Direct MD results
are shown in (a) and (b) corresponding to t = 10 ps and t = 20 ps. Multi-scale
DDMP-MD results are shown in (c) and (d) at t = 10 ps and t = 20 ps.

The stress in each bin is calculated using the pair interaction forces and the first line

of (2.25). The upper two figures of figure 7.3 show the xx-component of stress (σxx)

field at time t = 10 ps and t = 20 ps obtained by using the direct MD simulation.

The maximum stress developed is 162 GPa. This value of stress agrees to previous

similar work by Cherne et al. [56]. The shock velocity is calculated to be 5.2 km/s.



95

7.2 Multi-scale calculation for 2D problems

In chapter 6 we successfully implemented the multi-scale method for one dimensional

problems. The results are compared with full MD simulation. In this chapter, we

implement this multi-scale method for higher dimensional problems. For continuum

level calculation, we use the DDMP method as described in chapter 3.3. Molecular

dynamics simulation is used in each material point to calculate stress without using

a closure model. These material points being lagrangian, can be used to track the

history of the material deformation.

In DDMP method, the internal force integral can be approximated as,

f inti ≈ −
Np∑
p=1

Vpσp · ∇Si(xp), (7.1)

with Np being the total number of material points, σp is the stress at material point

p, and Vp is the volume of the material point. The gradient of shape function takes

the form

∇Si(x) = α(x)∇Si(x) + [1− α(x)]
N∑
j=1

Sj(x)

Vj

∫
Sj(y)∇Si(y)dVy, (7.2)

with N being number of nodes in the computational domain and α(x) is a continuous

function which vanishes on cell boundaries. In our calculations, we choose α(x) as

[33]

α(x) = 0.5

{
nc∏
k=1

[ncSk(x)]

} 3
2(nc−1)d

, (7.3)

where nc is the number of nodes in the cell, and d is the dimension of the problem.



96

As discussed in chapter 3.3, the DDMP method modifies the gradient of shape

function (figure 3.2) to make it continuous across a cell boundary to eliminate the cell

crossing noise. The modified shape function gradient extends across 4 cells (in 1D)

where as the shape function extends only across 2 cells. This mismatch between the

support of ∇Si and the support of Si can cause instability when explicit calculation

are performed. To address this issue, we need to distribute the nodal force f intl

corresponding to node l away from zero mass nodes as well as very small mass nodes

[33]. Let us define the distribution coefficient C0
li as,

C0
li =



δli, if ml > 0,

√
mi∑

jl
√
mj
, if ml = 0 and nodes i and l share a cell,

0, otherwise,

(7.4)

where the summation
∑

jl is over all the nodes (j′s) sharing a cell with node l and

the node l itself. Let us define another distribution coefficient C1
li as,

C1
li =



δli, if ml > mε,

√
mi∑

jl
√
mj
, if ml ≤ mε and nodes i and l share a cell,

0, otherwise,

(7.5)

where mε is the lower bound of the nodal mass below which the distribution of mass

algorithm is activated. For the calculation in this thesis, we take mε to be 4% of the

mass of a material point. Finally, the nodal force corresponding to node i is calculated
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as,

f inti =
N∑
j=1

C1
li

N∑
l=1

C0
lif

int
l (7.6)

Similarly, the nodal velocity corresponding to node i is also calculated as,

vi =
N∑
j=1

C1
li

N∑
l=1

C0
livl (7.7)

An artificial viscosity is used to suppress the Gibbs phenomenon near the compression

shock wave front. An additional stress in the form of artificial viscosity is added to the

total stress of the system. The amount of artificial viscosity used in this experiment

is [57]

qij =
d∑

k=1

ρlQijk(τ0cLa− cqlλk), (7.8)

Qk = λkgkg
T
k , (7.9)

with gk being the eigenvectors of the strain rate tensor, d is the dimension of the

problem, λk are the negative eigenvalues of the strain rate tensor, ρ is the density of

the material point, l is the characteristic length of the material point and τ0 is defined

as,

τ0 =
|∇.v|
||∇v||2

(7.10)

In our calculations, we choose the coefficients cL = 1.5 and cq = 2.0. We use l as an

average of x and y-lengths of the material point.

Each material point is associated with a MD system for stress calculation purpose.

Regardless of the dimensionality of continuum level problem, the MD calculation is

performed in a three-dimensional periodic domain to minimize the boundary effects



98

[11, 10, 12]. First, the MD system is initialized by placing copper atoms in cubic

periodic domains [−Lpx/2, Lpx/2] × [−Lpy/2, Lpy/2] × [−Lpz/2, Lpz/2] with Lpx =

Lpy = Lpz, according to face center cubic (FCC) array. The periodic length of an

MD box is multiple of the lattice constant (a = 3.615Å). The molecular dynamics

simulation is performed using the same EAM potential as described in chapter 7.1.

The MD calculations are performed in GPU using CUDA.

The communication between continuum level calculation and atomistic calculation

is through the stress and strain rate tensor. The periodic domain lengths of MD

system in x and y- directions are updated according to equation (5.7). The periodic

domain size in z-direction is kept constant. To make sure all atoms are inside the

periodic domain, periodic boundary condition is used as described in chapter 5.2. To

deal with shear strain, a modified gradient of velocity is used as described in chapter

5.2.

Different from the one dimensional shock wave example in previous chapter, the

strain rate developed in this example of jet formation can go very high (as high as

order of 1011s−1) across the shock. For such problems, we need to take into account

of how much energy of a MD box is changing compared to continuum level change in

energy. To ensure consistency in change in total energy, the continuum level change

in energy in a continuum level time step is calculated as,

dE = σ : ε̇dV, (7.11)

where σ is the stress tensor, ε̇ is the strain rate tensor, and dV is the change in volume
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in a time step. The difference between change in energy according to equation (7.11)

and the change in energy in the MD system is added to the MD system in the form

of kinetic energy (or temperature).

7.3 Numerical results and discussions

In this section we explore the numerical properties of our multi-scale method for the

case of jet formation of copper around a notch under a strong impact. To prove the

feasibility of this method, we compare the results from the multi-scale method with

the results from direct MD simulation as described in the previous section 7.1. The

computational domain is the same as shown in figure 7.1. A block of copper single

crystal with length 144 nm and width 72 nm is considered. The length of the copper

also consists of a piston of length 14.4 nm. A triangular shaped notch is created on

the other end of the block with depth of 36 nm. At t = 0, the block of copper is

slammed into the piston (at rest) with an impact velocity 2.5 km/s. A shock wave

starts propagating through the copper crystal away from the piston.

The lower two figures in Figure 7.3 show the results obtained by using DDMP-MD

multi-scale calculation at time t = 10 ps and t = 20 ps. In this calculation, we use

100 × 50 cells with 4 particles per cell to cover the sample domain. The triangular

notch is formed by eliminating some material points, and there are 17,524 material

points in total. Each MD box associated with each material point consists of 500

atoms. The dimensions of the MD box are approximately 18 Å corresponding to 5
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Figure 7.4 : Jet formation in copper obtained by using direct MD simulation and the
multi-scale calculation

lattice cells with lattice constant 3.615 Å. To mimic the periodic boundary condition

of the direct MD calculation along y−direction, in this multi-scale calculation, we

also use boundary condition along y−direction in the DDMP calculation such that

the y−component of nodal velocities corresponding to boundary cells in y−direction

are always kept zero. The stress (σxx) field in the multi-scale DDMP-MD results

(Figure 7.3 (c)) for t = 10 ps is very similar to the results obtained by using direct

MD simulation (Figure 7.3 (a)). At t = 20 ps, we can see the similar jet formation in

multi-scale calculation, too. The jet is not as sharp as in MD calculation because of

the lower resolution of multi-scale calculation.

Figure 7.4 shows the jet shooting outward at time t = 30 ps. The result obtained

from combined DDMP-MD calculation shows a clear jet formation. The multi-scale

method developed in this thesis work is able to capture the non-equilibrium phenom-

ena across the shock and produces a reasonable result compared to the direct MD
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Particles/cell Error (%)

1 24.7

4 10.1

16 9.8

Number of cells Error (%)

50× 25 10.1

100× 50 6.0

160× 80 5.6

(A) (B)

Table 7.1 : Percentage errors of σxx calculated at t = 20 ps in comparison to direct
MD simulation (A) For different particles per cell with 1250 cells, (B) For different
number of cells with 4 particle per cell.

simulation result.

To study the effect of number of particles per cell and the grid resolution in

the multi-scale calculation, we calculate the percentage error in the calculation of

σxx in comparison with direct MD simulation results. To calculate the error in

σxx calculation, for each material point, we find the spatially corresponding bin as

described in Chapter 7.1 in the direct MD simulation and compare the results. The

percentage error is calculated as

ε =

√∑
(σMD − σMS)2∑

σ2
MD

, (7.12)

where σMD is the stress calculated using direct MD simulation and σMS is the stress

calculated using multi-scale method. Table 7.1 shows the results for varying number

of material points per cell and varying grid resolutions. As expected, the error is

smaller if we use more material points per cell keeping the number of cells fixed.

Also, the results converge with respect to direct MD simulation if we refine the mesh
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size. The figures 7.3 and 7.4 are obtained by using 4 material points per cell with

100× 50 cells, and the calculated error is 6.0%.

7.4 Chapter Summary

Using the similar strategy as in one dimensional shock propagation in the previous

chapter, our multi-scale method is applied for the case involving much extreme ma-

terial deformation. The capability of DDMP method to handle extreme material

deformation has made it possible to apply this multi-scale method for such problem.

This multi-scale method has been shown to be able to capture the thermodynamically

non-equilibrium phenomena. After the shock passes, the material behind the shock

is melted. Since we do not use any constitutive model to calculate stress, we do not

even need to worry about whether the material is elastic, plastic or melt as long as

the potential used for MD simulation can capture these change of phases.
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Chapter 8

Conclusions

8.1 Summary

This dissertation attempts to build a multi-scale numerical method based on DDMP

method which can be applied for problems involving extreme material deformation

with high strain rates. For such problems, the time scale of material deformation is

shorter than the material takes to reach a thermodynamic equilibrium state. Instead

of using conventional constitutive relations or equations of state (which are often un-

available for such problems) to calculate closure quantities, such as stress tensor, we

perform MD simulation to calculate those quantities. The continuum level calculation

is performed using DDMP method to consider extreme deformation of the material.

We choose DDMP method because of its capability of tracking material deformation

history for cases involving extreme material deformations. History dependency be-

comes important for such systems in thermodynamically non-equilibrium state. The

proposed multi-scale method is similar to type B heterogeneous multi-scale method

(HMM) described in [7].

In chapter 2, we derive macroscopic momentum equations starting from Liouville

equation. Such derived momentum equation (2.12) can also be used for systems in
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thermodynamically non-equilibrium state as long as we can calculate the stress tensor

(σ). The stress tensor (σ) is directly related to the microscopic interactions among

molecules and atoms as in equation (2.19). We also show that the stress defined in

equation (2.19) is equivalent to the virial expression of cauchy stress in the limit of

la << lm, where la is the atomic length scale and lm is the macroscopic length scale.

In chapter 3, we introduce MPM method. Similar to FEM, MPM also seeks weak

solution to PDEs. The MPM uses material points as integration points. These ma-

terial points can move with the material and thus carry the history of the material

deformation. The material points provide Lagrangian description of the material and

fixed Eulerian grids are used to solve the momentum equations. Thus MPM elimi-

nates diffusion problems associated with pure Eulerian methods and mesh distortion

issues associated with pure Lagrangian methods. This makes MPM suitable for large

deformation problems. The original MPM method suffers from so called cell crossing

noise because of the discontinuity in gradient of shape function across cell boundaries.

Currently, there are three different versions of MPM methods available to eliminate

the cell crossing noise, GIMP, CPDI and DDMP. Chapter 3 gives a brief description

of GIMP and CPDI methods as well as the detailed description of DDMP method.

The DDMP method reduces the numerical noise by introducing gradient of shape

function that is continuous across cell boundaries without violating the conservation

properties of original MPM method.

In chapter 4, we investigate the properties of original MPM, GIMP, CPDI and
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DDMP methods for a one-dimensional shock problem in an ideal gas. We show that

the original MPM method can not be used for weak isothermal shocks. GIMP and

CPDI methods can provide reasonable results with minimal particles per cell but

they fail to converge as number of particles per cell increases. The DDMP method

converges as the number of particles increases but it requires large number of particles

to achieve accurate results. This makes DDMP method very expensive especially for

the proposed multi-scale method in this dissertation where the stress in each material

point is calculated using MD simulation. The cause for producing the unsatisfactory

DDMP results is identified. We introduce the sub-point method in which sub-points

are generated around the material points and are used only as integration points. We

show that we can achieve accurate results by using many sub-points without having

to use many material points for the case of weak as well as strong shock problems.

The computational cost can be greatly reduced using the sub-point scheme.

In our multi-scale method, we use MD simulation to calculate stress in each ma-

terial point. Chapter 5 describes the basics of MD simulation. Leap frog algorithm

is used as an integration scheme to solve the equations of motion of atoms (equation

5.1). EAM method potential is used to calculate force on each atoms. We use periodic

boundary condition to eliminate any surface effects. For problems involving shear de-

formation, we modify the periodic boundary condition keeping the shape of the MD

box rectangular. To ensure conservation of number of atoms inside a MD box, we

transform the gradient of velocity tensor to upper rectangular form. The transforma-
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tion is equivalent to using a rotational frame of reference. It is commonly assumed

that this does not affect stress calculation. Further verification of this assumption is

necessary and left for future work.

In chapter 6, we use a one-dimensional strong shock propagation in cerium sin-

gle crystal to demonstrate the feasibility of the proposed multi-scale method. The

continuum level calculation is performed using DDMP method with sub-points, and

MD simulation is performed in each material point to calculate stress. Since the

material points do not need to communicate among each other, the MD simulations

are performed independently and parallel on a GPU. The results obtained from the

multi-scale DDMP-MD calculation are compared with direct MD calculation as well

as pure DDMP method. For strong shock problems, the combined DDMP-MD re-

sults are in good agreement with direct MD simulation results where the pure DDMP

method deviates from MD results. This proves that the combined DDMP-MD calcu-

lation can capture the thermodynamically non-equilibrium phenomena not captured

by the elastic model used in pure DDMP method.

In chapter 7, we apply the multi-scale method for a two-dimensional problem of jet

formation around a notch of a copper single crystal. A block of copper single crystal

is slammed into a rigid block with an initial velocity of 2.5 km/s. A jet formation

occurs after shock reaches the other end of the block around a notch. In figure 7.3, we

show that the combined DDMP-MD simulation results are very similar to the direct

MD simulation results.
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8.2 Future Work

Although, the experiments considered in this dissertation are limited to perfect crystal

systems, the main purpose of this dissertation is to show that our multi-scale method

can capture the thermodynamically non-equilibrium effects. To simulate more com-

plex systems, such as, crystal defects and dislocations, a large scale MD simulation

for each material point is needed. The larger MD system per material point requires

a larger capability of computing machine. Since the large scale MD simulation corre-

sponding to each material point can be performed independently and in parallel, this

multi-scale method can be implemented in modern high performance computing sys-

tems in almost embarrassingly parallel fashion with good efficiency. Even though we

believe its extension to complex problems in multi-dimension and other loading con-

ditions is rather straightforward because the DDMP method has been implemented to

three-dimensional calculations with complex deformation, the efficiency of the com-

bined multi-scale calculation still needs to be explored, and the consistency conditions

for the communication schemes between MD scale and continuum scale calculations

have yet to be studied.
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