DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells

Abstract

Abstract We improved the efficiency of ultra‐thin (0.49‐μm‐thick) Cu(In,Ga)Se 2 solar cells to 15.2% (officially measured). To achieve these results, we modified growth conditions from the 3‐stage process but did not add post‐deposition treatments or additional material layers. The increase in device efficiency is attributed to a steeper Ga gradient in the CIGS with higher Ga content near the Mo back contact, which can hinder electron‐hole recombination at the interface. We discuss device measurements and film characterization for ultra‐thin CIGS. Modeling is presented that shows the route to even higher efficiencies for devices with CIGS thicknesses of 0.5 μm.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
OSTI Identifier:
1479872
Alternate Identifier(s):
OSTI ID: 1455074
Report Number(s):
NREL/JA-5K00-70468
Journal ID: ISSN 1062-7995
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Progress in Photovoltaics
Additional Journal Information:
Journal Volume: 26; Journal Issue: 11; Journal ID: ISSN 1062-7995
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; Cu(In,Ga)Se2; CIGS; photovoltaic cells; thin films; semiconductor device modeling; current-voltage characteristics

Citation Formats

Mansfield, Lorelle M., Kanevce, Ana, Harvey, Steven P., Bowers, Karen A., Beall, Carolyn L., Glynn, Stephen, and Repins, Ingrid L. Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells. United States: N. p., 2018. Web. doi:10.1002/pip.3033.
Mansfield, Lorelle M., Kanevce, Ana, Harvey, Steven P., Bowers, Karen A., Beall, Carolyn L., Glynn, Stephen, & Repins, Ingrid L. Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells. United States. https://doi.org/10.1002/pip.3033
Mansfield, Lorelle M., Kanevce, Ana, Harvey, Steven P., Bowers, Karen A., Beall, Carolyn L., Glynn, Stephen, and Repins, Ingrid L. Tue . "Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells". United States. https://doi.org/10.1002/pip.3033. https://www.osti.gov/servlets/purl/1479872.
@article{osti_1479872,
title = {Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells},
author = {Mansfield, Lorelle M. and Kanevce, Ana and Harvey, Steven P. and Bowers, Karen A. and Beall, Carolyn L. and Glynn, Stephen and Repins, Ingrid L.},
abstractNote = {Abstract We improved the efficiency of ultra‐thin (0.49‐μm‐thick) Cu(In,Ga)Se 2 solar cells to 15.2% (officially measured). To achieve these results, we modified growth conditions from the 3‐stage process but did not add post‐deposition treatments or additional material layers. The increase in device efficiency is attributed to a steeper Ga gradient in the CIGS with higher Ga content near the Mo back contact, which can hinder electron‐hole recombination at the interface. We discuss device measurements and film characterization for ultra‐thin CIGS. Modeling is presented that shows the route to even higher efficiencies for devices with CIGS thicknesses of 0.5 μm.},
doi = {10.1002/pip.3033},
journal = {Progress in Photovoltaics},
number = 11,
volume = 26,
place = {United States},
year = {Tue Jun 19 00:00:00 EDT 2018},
month = {Tue Jun 19 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 45 works
Citation information provided by
Web of Science

Figures / Tables:

TABLE I TABLE I: J-V PARAMETERS OF BEST THIN DEVICES

Save / Share:

Works referenced in this record:

Band-gap grading in Cu(In,Ga)Se2 solar cells
journal, November 2005


CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction
journal, April 2000

  • Park, J. S.; Dong, Z.; Kim, Sungtae
  • Journal of Applied Physics, Vol. 87, Issue 8
  • DOI: 10.1063/1.372400

The impact of reducing the thickness of electrodeposited stacked Cu/In/Ga layers on the performance of CIGS solar cells
journal, April 2017


An assessment of metal supply sustainability as an input to policy: security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity
journal, January 2017


Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys
journal, May 2002

  • Alonso, M. I.; Garriga, M.; Durante Rincón, C. A.
  • Applied Physics A: Materials Science & Processing, Vol. 74, Issue 5, p. 659-664
  • DOI: 10.1007/s003390100931

Enhanced performance of ultra-thin Cu(In,Ga)Se2 solar cells deposited at low process temperature
journal, January 2015


High‐efficiency CuIn x Ga 1− x Se 2 solar cells made from (In x ,Ga 1− x ) 2 Se 3 precursor films
journal, July 1994

  • Gabor, Andrew M.; Tuttle, John R.; Albin, David S.
  • Applied Physics Letters, Vol. 65, Issue 2
  • DOI: 10.1063/1.112670

Predicting Ga and Cu Profiles in Co-Evaporated Cu(In,Ga)Se 2 Using Modified Diffusion Equations and a Spreadsheet
journal, January 2017

  • Repins, Ingrid L.; Harvey, Steve; Bowers, Karen
  • MRS Advances, Vol. 2, Issue 53
  • DOI: 10.1557/adv.2017.350

Cu deficiency in multi-stage co-evaporated Cu(In,Ga)Se2 for solar cells applications: Microstructure and Ga in-depth alloying
journal, May 2010


Influence of Varying Cu Content on Growth and Performance of Ga-Graded Cu(In,Ga)Se 2 Solar Cells
journal, November 2015


Bandgap optimization of submicron-thick Cu(In,Ga)Se 2 solar cells : Bandgap optimization of submicron-thick Cu(In,Ga)Se
journal, August 2014

  • Yang, Shihang; Zhu, Jiakuan; Zhang, Xieqiu
  • Progress in Photovoltaics: Research and Applications, Vol. 23, Issue 9
  • DOI: 10.1002/pip.2543

Gallium diffusion and diffusivity in CuInSe 2 epitaxial layers
journal, December 1996

  • Schroeder, David J.; Berry, Gene D.; Rockett, Angus A.
  • Applied Physics Letters, Vol. 69, Issue 26
  • DOI: 10.1063/1.117820

Ultrathin Cu(In,Ga)Se 2 based solar cells
journal, July 2017


Review on light management by nanostructures in chalcopyrite solar cells
journal, March 2017


Effect of Reduced Cu(InGa)(SeS)$_{\bm 2}$ Thickness Using Three-Step H$_{\bm 2}$Se/Ar/H$_{\bm 2}$S Reaction of Cu–In–Ga Metal Precursor
journal, January 2013


Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se 2 solar cells : Employing Si solar cell technology
journal, July 2014

  • Vermang, Bart; Wätjen, Jörn Timo; Fjällström, Viktor
  • Progress in Photovoltaics: Research and Applications, Vol. 22, Issue 10
  • DOI: 10.1002/pip.2527

Optimization of CBD CdS process in high-efficiency Cu(In,Ga)Se2-based solar cells
journal, February 2002


High efficiency graded bandgap thin-film polycrystalline Cu(In,Ga) Se2-based solar cells
journal, June 1996


A one-dimensional Fickian model to predict the Ga depth profiles in three-stage Cu(In,Ga)Se 2
journal, May 2014

  • Rodriguez-Alvarez, H.; Mainz, R.; Sadewasser, S.
  • Journal of Applied Physics, Vol. 115, Issue 20
  • DOI: 10.1063/1.4880298

A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors
journal, March 2001


Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells
journal, July 1999


Ion migration in chalcopyrite semiconductors
journal, December 1992

  • Dagan, Geula; Ciszek, T. F.; Cahen, David
  • The Journal of Physical Chemistry, Vol. 96, Issue 26
  • DOI: 10.1021/j100205a073

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.