skip to main content

DOE PAGESDOE PAGES

Title: Classical-Nova Contribution to the Milky Way’s Al 26 Abundance: Exit Channel of the Key Al 25 ( p , γ ) Si 26 Resonance

We present that classical novae are expected to contribute to the 1809-keV Galactic γ-ray emission by producing its precursor 26Al, but the yield depends on the thermonuclear rate of the unmeasured 25Al(p,γ) 26Si reaction. Using the β decay of 26P to populate the key J π=3 + resonance in this reaction, we report the first evidence for the observation of its exit channel via a 1741.6±0.6(stat)±0.3(syst) keV primary γ ray, where the uncertainties are statistical and systematic, respectively. By combining the measured γ-ray energy and intensity with other experimental data on 26Si, we find the center-of-mass energy and strength of the resonance to be E r=414.9±0.6(stat)±0.3(syst)±0.6(lit.) keV and ωγ=23±6(stat)$$+11\atop{-10}$$(lit.) meV, respectively, where the last uncertainties are from adopted literature data. Finally, we use hydrodynamic nova simulations to model 26Al production showing that these measurements effectively eliminate the dominant experimental nuclear-physics uncertainty and we estimate that novae may contribute up to 30% of the Galactic 26Al.
Authors:
 [1] ;  [2] ;  [3] ;  [4] ;  [5] ;  [1] ;  [6] ;  [7] ;  [8] ;  [7] ;  [7] ;  [9] ;  [8] ;  [2] ;  [10] ;  [9] ;  [5] ;  [11] ;  [12] ;  [13] more »;  [1] ;  [9] ;  [12] ;  [7] « less
  1. Michigan State Univ., East Lansing, MI (United States). Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory
  2. Michigan State Univ., East Lansing, MI (United States). Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory; Univ. of Washington, Seattle, WA (United States). Department of Physics
  3. Colorado School of Mines, Golden, CO (United States). Department of Physics
  4. Departament Física i Enginyeria Nuclear (UPC) and Institut d’Estudis Espacials de Catalunya (IEEC), Barcelona (Spain)
  5. Michigan State Univ., East Lansing, MI (United States). Department of Chemistry and National Superconducting Cyclotron Laboratory
  6. Michigan State Univ., East Lansing, MI (United States). Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory; Kalamazoo College, MI (United States)
  7. McMaster Univ., Hamilton, ON (Canada). Department of Physics and Astronomy
  8. Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab.
  9. Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Laboratory and Joint Institute for Nuclear Astrophysics
  10. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  11. Michigan State Univ., East Lansing, MI (United States). Department of Electrical Engineering, Joint Institute for Nuclear Astrophysics and National Superconducting Cyclotron Laboratory
  12. Michigan State Univ., East Lansing, MI (United States). Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory and Joint Institute for Nuclear Astrophysics
  13. Michigan State Univ., East Lansing, MI (United States). Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory; University of Southern Indiana, Evansville, IN (United States)
Publication Date:
Grant/Contract Number:
NA0000979; FG02-97ER41020
Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 111; Journal Issue: 23; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Research Org:
Nuclear Science and Security Consortium, Berkeley, CA (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 79 ASTRONOMY AND ASTROPHYSICS
OSTI Identifier:
1454781

Bennett, M. B., Wrede, C., Chipps, K. A., Jose, J., Liddick, S. N., Santia, M., Bowe, A., Chen, A. A., Cooper, N., Irvine, D., McNeice, E., Montes, F., Naqvi, F., Ortez, R., Pain, S. D., Pereira, J., Prokop, C., Quaglia, J., Quinn, S. J., Schwartz, S. B., Shanab, S., Simon, A., Spyrou, A., and Thiagalingam, E.. Classical-Nova Contribution to the Milky Way’s Al26 Abundance: Exit Channel of the Key Al25(p,γ)Si26 Resonance. United States: N. p., Web. doi:10.1103/PhysRevLett.111.232503.
Bennett, M. B., Wrede, C., Chipps, K. A., Jose, J., Liddick, S. N., Santia, M., Bowe, A., Chen, A. A., Cooper, N., Irvine, D., McNeice, E., Montes, F., Naqvi, F., Ortez, R., Pain, S. D., Pereira, J., Prokop, C., Quaglia, J., Quinn, S. J., Schwartz, S. B., Shanab, S., Simon, A., Spyrou, A., & Thiagalingam, E.. Classical-Nova Contribution to the Milky Way’s Al26 Abundance: Exit Channel of the Key Al25(p,γ)Si26 Resonance. United States. doi:10.1103/PhysRevLett.111.232503.
Bennett, M. B., Wrede, C., Chipps, K. A., Jose, J., Liddick, S. N., Santia, M., Bowe, A., Chen, A. A., Cooper, N., Irvine, D., McNeice, E., Montes, F., Naqvi, F., Ortez, R., Pain, S. D., Pereira, J., Prokop, C., Quaglia, J., Quinn, S. J., Schwartz, S. B., Shanab, S., Simon, A., Spyrou, A., and Thiagalingam, E.. 2013. "Classical-Nova Contribution to the Milky Way’s Al26 Abundance: Exit Channel of the Key Al25(p,γ)Si26 Resonance". United States. doi:10.1103/PhysRevLett.111.232503. https://www.osti.gov/servlets/purl/1454781.
@article{osti_1454781,
title = {Classical-Nova Contribution to the Milky Way’s Al26 Abundance: Exit Channel of the Key Al25(p,γ)Si26 Resonance},
author = {Bennett, M. B. and Wrede, C. and Chipps, K. A. and Jose, J. and Liddick, S. N. and Santia, M. and Bowe, A. and Chen, A. A. and Cooper, N. and Irvine, D. and McNeice, E. and Montes, F. and Naqvi, F. and Ortez, R. and Pain, S. D. and Pereira, J. and Prokop, C. and Quaglia, J. and Quinn, S. J. and Schwartz, S. B. and Shanab, S. and Simon, A. and Spyrou, A. and Thiagalingam, E.},
abstractNote = {We present that classical novae are expected to contribute to the 1809-keV Galactic γ-ray emission by producing its precursor 26Al, but the yield depends on the thermonuclear rate of the unmeasured 25Al(p,γ)26Si reaction. Using the β decay of 26P to populate the key Jπ=3+ resonance in this reaction, we report the first evidence for the observation of its exit channel via a 1741.6±0.6(stat)±0.3(syst) keV primary γ ray, where the uncertainties are statistical and systematic, respectively. By combining the measured γ-ray energy and intensity with other experimental data on 26Si, we find the center-of-mass energy and strength of the resonance to be Er=414.9±0.6(stat)±0.3(syst)±0.6(lit.) keV and ωγ=23±6(stat)$+11\atop{-10}$(lit.) meV, respectively, where the last uncertainties are from adopted literature data. Finally, we use hydrodynamic nova simulations to model 26Al production showing that these measurements effectively eliminate the dominant experimental nuclear-physics uncertainty and we estimate that novae may contribute up to 30% of the Galactic 26Al.},
doi = {10.1103/PhysRevLett.111.232503},
journal = {Physical Review Letters},
number = 23,
volume = 111,
place = {United States},
year = {2013},
month = {12}
}