skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on August 17, 2018

Title: Study of the Al m 26 ( d , p ) Al 27 Reaction and the Influence of the Al 26 0 + Isomer on the Destruction of Al 26 in the Galaxy

The existence of 26Al (t 1/2 = 7.17 × 10 5 yr) in the interstellar medium provides a direct confirmation of ongoing nucleosynthesis in the Galaxy. The presence of a low-lying 0 + isomer ( 26Al m), however, severely complicates the astrophysical calculations. Here we present for the first time a study of the 26Al m (d, p) 27 Al reaction using an isomeric 26Al beam. The selectivity of this reaction allowed the study of ℓ = 0 transfers to T = 1/2, and T = 3/2 states in 27Al . Mirror symmetry arguments were then used to constrain the 26Al m (p,γ) 27Si reaction rate and provide an experimentally determined upper limit of the rate for the destruction of isomeric 26Al via radiative proton capture reactions, which is expected to dominate the destruction path of 26Al m in asymptotic giant branch stars, classical novae, and core collapse supernovae.
Authors:
 [1] ;  [2] ;  [1] ;  [2] ;  [2] ;  [2] ;  [2] ;  [2] ;  [3] ;  [4] ;  [2] ;  [1] ;  [2] ;  [2] ;  [5] ;  [2] ;  [2] ;  [6] ;  [2] ;  [2]
  1. Florida State Univ., Tallahassee, FL (United States). Dept. of Physics
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Physics Division
  3. McMaster Univ., Hamilton, ON (Canada). Dept. of Physics and Astronomy
  4. Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics and Astronomy
  5. Univ. of Connecticut, Storrs, CT (United States). Dept. of Physics
  6. Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics and Astronomy; Argonne National Lab. (ANL), Argonne, IL (United States). Physics Division
Publication Date:
Grant/Contract Number:
AC02-06CH11357; FG02-96ER40978
Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 119; Journal Issue: 7; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS
OSTI Identifier:
1394547
Alternate Identifier(s):
OSTI ID: 1375518