skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery

Abstract

Here, the use of automated, unmanned aerial vehicles (drones) to deliver commercial packages is poised to become a new industry, significantly shifting energy use in the freight sector. Here we find the current practical range of multi-copters to be about 4 km with current battery technology, requiring a new network of urban warehouses or waystations as support. We show that, although drones consume less energy per package-km than delivery trucks, the additional warehouse energy required and the longer distances traveled by drones per package greatly increase the life-cycle impacts. Still, in most cases examined, the impacts of package delivery by small drone are lower than ground-based delivery. Results suggest that, if carefully deployed, drone-based delivery could reduce greenhouse gas emissions and energy use in the freight sector. To realize the environmental benefits of drone delivery, regulators and firms should focus on minimizing extra warehousing and limiting the size of drones.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4];  [3];  [5]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Carnegie Mellon Univ., Pittsburgh, PA (United States)
  3. SRI International, Menlo Park, CA (United States)
  4. Univ. of Colorado, Boulder, CO (United States)
  5. SRI International, Menlo Park, CA (United States); LeoLabs, Inc., Menlo Park, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1440731
Report Number(s):
LLNL-JRNL-676427
Journal ID: ISSN 2041-1723; 794870
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; Climate-change mitigation; Energy efficiency; Energy science and technology

Citation Formats

Stolaroff, Joshuah K., Samaras, Constantine, O'Neill, Emma R., Lubers, Alia, Mitchell, Alexandra S., and Ceperley, Daniel. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery. United States: N. p., 2018. Web. doi:10.1038/s41467-017-02411-5.
Stolaroff, Joshuah K., Samaras, Constantine, O'Neill, Emma R., Lubers, Alia, Mitchell, Alexandra S., & Ceperley, Daniel. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery. United States. doi:10.1038/s41467-017-02411-5.
Stolaroff, Joshuah K., Samaras, Constantine, O'Neill, Emma R., Lubers, Alia, Mitchell, Alexandra S., and Ceperley, Daniel. Tue . "Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery". United States. doi:10.1038/s41467-017-02411-5. https://www.osti.gov/servlets/purl/1440731.
@article{osti_1440731,
title = {Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery},
author = {Stolaroff, Joshuah K. and Samaras, Constantine and O'Neill, Emma R. and Lubers, Alia and Mitchell, Alexandra S. and Ceperley, Daniel},
abstractNote = {Here, the use of automated, unmanned aerial vehicles (drones) to deliver commercial packages is poised to become a new industry, significantly shifting energy use in the freight sector. Here we find the current practical range of multi-copters to be about 4 km with current battery technology, requiring a new network of urban warehouses or waystations as support. We show that, although drones consume less energy per package-km than delivery trucks, the additional warehouse energy required and the longer distances traveled by drones per package greatly increase the life-cycle impacts. Still, in most cases examined, the impacts of package delivery by small drone are lower than ground-based delivery. Results suggest that, if carefully deployed, drone-based delivery could reduce greenhouse gas emissions and energy use in the freight sector. To realize the environmental benefits of drone delivery, regulators and firms should focus on minimizing extra warehousing and limiting the size of drones.},
doi = {10.1038/s41467-017-02411-5},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Core-Shell-Structured CNT@RuO 2 Composite as a High-Performance Cathode Catalyst for Rechargeable Li-O 2 Batteries
journal, November 2013

  • Jian, Zelang; Liu, Pan; Li, Fujun
  • Angewandte Chemie International Edition, Vol. 53, Issue 2
  • DOI: 10.1002/anie.201307976

Regional variations in the health, environmental, and climate benefits of wind and solar generation
journal, June 2013

  • Siler-Evans, K.; Azevedo, I. L.; Morgan, M. G.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 29
  • DOI: 10.1073/pnas.1221978110

Life Cycle Assessment of Greenhouse Gas Emissions from Plug-in Hybrid Vehicles: Implications for Policy
journal, May 2008

  • Samaras, Constantine; Meisterling, Kyle
  • Environmental Science & Technology, Vol. 42, Issue 9
  • DOI: 10.1021/es702178s

Food-Miles and the Relative Climate Impacts of Food Choices in the United States
journal, May 2008

  • Weber, Christopher L.; Matthews, H. Scott
  • Environmental Science & Technology, Vol. 42, Issue 10
  • DOI: 10.1021/es702969f

Implications of changing natural gas prices in the United States electricity sector for SO 2 , NO X and life cycle GHG emissions
journal, August 2012

  • Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W. Michael
  • Environmental Research Letters, Vol. 7, Issue 3
  • DOI: 10.1088/1748-9326/7/3/034018

Impact of Recycling on Cradle-to-Gate Energy Consumption and Greenhouse Gas Emissions of Automotive Lithium-Ion Batteries
journal, October 2012

  • Dunn, Jennifer B.; Gaines, Linda; Sullivan, John
  • Environmental Science & Technology, Vol. 46, Issue 22
  • DOI: 10.1021/es302420z

Life Cycle Assessment and Grid Electricity: What Do We Know and What Can We Know?
journal, March 2010

  • Weber, Christopher L.; Jaramillo, Paulina; Marriott, Joe
  • Environmental Science & Technology, Vol. 44, Issue 6
  • DOI: 10.1021/es9017909

Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies
journal, October 2014

  • Hertwich, Edgar G.; Gibon, Thomas; Bouman, Evert A.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 20
  • DOI: 10.1073/pnas.1312753111

Drivers of the US CO2 emissions 1997–2013
journal, July 2015

  • Feng, Kuishuang; Davis, Steven J.; Sun, Laixiang
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8714

Estimating marginal CO2 emissions rates for national electricity systems
journal, October 2010


The Energy and Climate Change Implications of Different Music Delivery Methods
journal, August 2010


The Optimal Placement of Sensors in Square Target Regions with Varying Boundary Length
journal, January 2013


Comparative Life-Cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation
journal, September 2007

  • Jaramillo, Paulina; Griffin, W. Michael; Matthews, H. Scott
  • Environmental Science & Technology, Vol. 41, Issue 17
  • DOI: 10.1021/es063031o

Marginal Emissions Factors for the U.S. Electricity System
journal, April 2012

  • Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M. Granger
  • Environmental Science & Technology, Vol. 46, Issue 9
  • DOI: 10.1021/es300145v

Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries
journal, March 2007


An overview of energy sources for electric vehicles
journal, July 1999


Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies
journal, November 2014

  • Graff Zivin, Joshua S.; Kotchen, Matthew J.; Mansur, Erin T.
  • Journal of Economic Behavior & Organization, Vol. 107
  • DOI: 10.1016/j.jebo.2014.03.010

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits
journal, September 2011

  • Michalek, J. J.; Chester, M.; Jaramillo, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 40
  • DOI: 10.1073/pnas.1104473108

Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO 2 Emissions across the United States
journal, June 2015

  • Tamayao, Mili-Ann M.; Michalek, Jeremy J.; Hendrickson, Chris
  • Environmental Science & Technology, Vol. 49, Issue 14
  • DOI: 10.1021/acs.est.5b00815

Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges
journal, April 2012

  • Rabis, Annett; Rodriguez, Paramaconi; Schmidt, Thomas J.
  • ACS Catalysis, Vol. 2, Issue 5
  • DOI: 10.1021/cs3000864

Comparison of Life Cycle Greenhouse Gases from Natural Gas Pathways for Medium and Heavy-Duty Vehicles
journal, May 2015

  • Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M. L.
  • Environmental Science & Technology, Vol. 49, Issue 12
  • DOI: 10.1021/es5052759

Evaluation of a rapid LMP-based approach for calculating marginal unit emissions
journal, November 2013


Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles
journal, September 2010

  • Notter, Dominic A.; Gauch, Marcel; Widmer, Rolf
  • Environmental Science & Technology, Vol. 44, Issue 17
  • DOI: 10.1021/es903729a

Rechargeable batteries with aqueous electrolytes
journal, May 2000


Life cycle comparison of traditional retail and e-commerce logistics for electronic products: A case study of buy.com
conference, May 2009

  • Weber, Christopher L.; Hendrickson, Chris T.; Matthews, H. Scott
  • 2009 IEEE International Symposium on Sustainable Systems and Technology (ISSST)
  • DOI: 10.1109/ISSST.2009.5156681

Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States
journal, December 2014

  • Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 52
  • DOI: 10.1073/pnas.1406853111

Towards a more efficient quadrotor configuration
conference, November 2013

  • Driessens, Scott; Pounds, Paul E. I.
  • 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013)
  • DOI: 10.1109/IROS.2013.6696530

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation
journal, July 2014

  • Heath, G. A.; O'Donoughue, P.; Arent, D. J.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 31
  • DOI: 10.1073/pnas.1309334111

Science, technology and the future of small autonomous drones
journal, May 2015


Life Cycle Greenhouse Gas Emissions From U.S. Liquefied Natural Gas Exports: Implications for End Uses
journal, February 2015

  • Abrahams, Leslie S.; Samaras, Constantine; Griffin, W. Michael
  • Environmental Science & Technology, Vol. 49, Issue 5
  • DOI: 10.1021/es505617p

An automotive on-board 3.3 kW battery charger for PHEV application
conference, September 2011

  • Gautam, Deepak; Musavi, Fariborz; Edington, Murray
  • 2011 IEEE Vehicle Power and Propulsion Conference (VPPC)
  • DOI: 10.1109/VPPC.2011.6043192

Comparative Assessment of Models and Methods To Calculate Grid Electricity Emissions
journal, August 2016

  • Ryan, Nicole A.; Johnson, Jeremiah X.; Keoleian, Gregory A.
  • Environmental Science & Technology, Vol. 50, Issue 17
  • DOI: 10.1021/acs.est.5b05216

Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations
journal, December 2013

  • Turconi, Roberto; Boldrin, Alessio; Astrup, Thomas
  • Renewable and Sustainable Energy Reviews, Vol. 28
  • DOI: 10.1016/j.rser.2013.08.013

Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles – Critical issues
journal, November 2010


Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles
journal, May 2011

  • Majeau-Bettez, Guillaume; Hawkins, Troy R.; Strømman, Anders Hammer
  • Environmental Science & Technology, Vol. 45, Issue 10
  • DOI: 10.1021/es103607c

Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles
journal, August 2012


Fuel Cell Systems Explained, Second Edition
book, February 2003


Life cycle assessment of electricity transmission and distribution—part 2: transformers and substation equipment
journal, September 2011

  • Jorge, Raquel Santos; Hawkins, Troy R.; Hertwich, Edgar G.
  • The International Journal of Life Cycle Assessment, Vol. 17, Issue 2
  • DOI: 10.1007/s11367-011-0336-0

Life cycle assessment of electricity transmission and distribution—part 1: power lines and cables
journal, September 2011

  • Jorge, Raquel Santos; Hawkins, Troy R.; Hertwich, Edgar G.
  • The International Journal of Life Cycle Assessment, Vol. 17, Issue 1
  • DOI: 10.1007/s11367-011-0335-1

Background and Reflections on the Life Cycle Assessment Harmonization Project
journal, April 2012


An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials
journal, January 2012

  • Wang, Hailiang; Liang, Yongye; Gong, Ming
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1921

    Works referencing / citing this record:

    Decarbonizing intraregional freight systems with a focus on modal shift
    journal, August 2018

    • Kaack, Lynn H.; Vaishnav, Parth; Morgan, M. Granger
    • Environmental Research Letters, Vol. 13, Issue 8
    • DOI: 10.1088/1748-9326/aad56c

    Decarbonizing intraregional freight systems with a focus on modal shift
    journal, August 2018

    • Kaack, Lynn H.; Vaishnav, Parth; Morgan, M. Granger
    • Environmental Research Letters, Vol. 13, Issue 8
    • DOI: 10.1088/1748-9326/aad56c