DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Beyond fossil fuel–driven nitrogen transformations

Abstract

Nitrogen is fundamental to all of life and many industrial processes. The interchange of nitrogen oxidation states in the industrial production of ammonia, nitric acid, and other commodity chemicals is largely powered by fossil fuels. Here, a key goal of contemporary research in the field of nitrogen chemistry is to minimize the use of fossil fuels by developing more efficient heterogeneous, homogeneous, photo-, and electrocatalytic processes or by adapting the enzymatic processes underlying the natural nitrogen cycle. These approaches, as well as the challenges involved, are discussed in this Review.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5];  [6]; ORCiD logo [7]; ORCiD logo [8];  [9]; ORCiD logo [10]; ORCiD logo [8]; ORCiD logo [11]; ORCiD logo [12]; ORCiD logo [13]; ORCiD logo [14]; ORCiD logo [15]; ORCiD logo [16]
  1. Columbia Univ., New York, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. The Univ. of Texas at Austin, Austin, TX (United States)
  3. Utah State Univ., Logan, UT (United States)
  4. Univ. of Rochester, Rochester, NY (United States)
  5. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  6. Texas A & M Univ., College Station, TX (United States)
  7. Yale Univ., New Haven, CT (United States)
  8. Northwestern Univ., Evanston, IL (United States)
  9. Pennsylvania State Univ., University Park, PA (United States)
  10. Arizona State Univ., Tempe, AZ (United States)
  11. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  12. Cornell Univ., Ithaca, NY (United States)
  13. Brookhaven National Lab. (BNL), Upton, NY (United States)
  14. Washington State Univ., Pullman, WA (United States)
  15. Univ. of Notre Dame, Notre Dame, IN (United States)
  16. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1440394
Report Number(s):
NREL/JA-2700-70628
Journal ID: ISSN 0036-8075
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Science
Additional Journal Information:
Journal Volume: 360; Journal Issue: 6391; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; nitrogen; fossil fuels; chemistry

Citation Formats

Chen, Jingguang G., Crooks, Richard M., Seefeldt, Lance C., Bren, Kara L., Bullock, R. Morris, Darensbourg, Marcetta Y., Holland, Patrick L., Hoffman, Brian, Janik, Michael J., Jones, Anne K., Kanatzidis, Mercouri G., King, Paul, Lancaster, Kyle M., Lymar, Sergei V., Pfromm, Peter, Schneider, William F., and Schrock, Richard R. Beyond fossil fuel–driven nitrogen transformations. United States: N. p., 2018. Web. doi:10.1126/science.aar6611.
Chen, Jingguang G., Crooks, Richard M., Seefeldt, Lance C., Bren, Kara L., Bullock, R. Morris, Darensbourg, Marcetta Y., Holland, Patrick L., Hoffman, Brian, Janik, Michael J., Jones, Anne K., Kanatzidis, Mercouri G., King, Paul, Lancaster, Kyle M., Lymar, Sergei V., Pfromm, Peter, Schneider, William F., & Schrock, Richard R. Beyond fossil fuel–driven nitrogen transformations. United States. https://doi.org/10.1126/science.aar6611
Chen, Jingguang G., Crooks, Richard M., Seefeldt, Lance C., Bren, Kara L., Bullock, R. Morris, Darensbourg, Marcetta Y., Holland, Patrick L., Hoffman, Brian, Janik, Michael J., Jones, Anne K., Kanatzidis, Mercouri G., King, Paul, Lancaster, Kyle M., Lymar, Sergei V., Pfromm, Peter, Schneider, William F., and Schrock, Richard R. Fri . "Beyond fossil fuel–driven nitrogen transformations". United States. https://doi.org/10.1126/science.aar6611. https://www.osti.gov/servlets/purl/1440394.
@article{osti_1440394,
title = {Beyond fossil fuel–driven nitrogen transformations},
author = {Chen, Jingguang G. and Crooks, Richard M. and Seefeldt, Lance C. and Bren, Kara L. and Bullock, R. Morris and Darensbourg, Marcetta Y. and Holland, Patrick L. and Hoffman, Brian and Janik, Michael J. and Jones, Anne K. and Kanatzidis, Mercouri G. and King, Paul and Lancaster, Kyle M. and Lymar, Sergei V. and Pfromm, Peter and Schneider, William F. and Schrock, Richard R.},
abstractNote = {Nitrogen is fundamental to all of life and many industrial processes. The interchange of nitrogen oxidation states in the industrial production of ammonia, nitric acid, and other commodity chemicals is largely powered by fossil fuels. Here, a key goal of contemporary research in the field of nitrogen chemistry is to minimize the use of fossil fuels by developing more efficient heterogeneous, homogeneous, photo-, and electrocatalytic processes or by adapting the enzymatic processes underlying the natural nitrogen cycle. These approaches, as well as the challenges involved, are discussed in this Review.},
doi = {10.1126/science.aar6611},
journal = {Science},
number = 6391,
volume = 360,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 290 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Atom and energy economy of nitrogen fixation. The numerical values represent standard (14) Gibbs free energies in kJ/mol of fixed $N$2 in the direction of the arrows. All thermochemical data are from (15), except for H2NOH.

Save / Share:

Works referenced in this record:

Enzymology and ecology of the nitrogen cycle
journal, January 2011

  • Martínez-Espinosa, Rosa María; Cole, Jeffrey A.; Richardson, David J.
  • Biochemical Society Transactions, Vol. 39, Issue 1
  • DOI: 10.1042/BST0390175

Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC Technical Report)
journal, December 2015

  • Armstrong, David A.; Huie, Robert E.; Koppenol, Willem H.
  • Pure and Applied Chemistry, Vol. 87, Issue 11-12
  • DOI: 10.1515/pac-2014-0502

Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase
journal, July 2017

  • Caranto, Jonathan D.; Lancaster, Kyle M.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 31
  • DOI: 10.1073/pnas.1704504114

Plasma N2-fixation: 1900–2014
journal, November 2015


Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms, and Prospects for Progress
journal, November 2017


Plasma Catalysis: Synergistic Effects at the Nanoscale
journal, November 2015


Progress in Chemical-Looping Combustion and Reforming technologies
journal, April 2012

  • Adanez, Juan; Abad, Alberto; Garcia-Labiano, Francisco
  • Progress in Energy and Combustion Science, Vol. 38, Issue 2, p. 215-282
  • DOI: 10.1016/j.pecs.2011.09.001

Metalloenzymes of the denitrification pathway
journal, December 2006


An Ionicity Rationale to Design Solid phase Metal Nitride Reactants for Solar Ammonia Production
journal, October 2012

  • Michalsky, Ronald; Pfromm, Peter H.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 44
  • DOI: 10.1021/jp307382r

From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis
journal, August 2015


Infrared spectroscopy of the nitrogenase MoFe protein under electrochemical control: potential-triggered CO binding
journal, January 2017

  • Paengnakorn, P.; Ash, P. A.; Shaw, S.
  • Chemical Science, Vol. 8, Issue 2
  • DOI: 10.1039/C6SC02860H

Catalytic conversion of nitrogen to ammonia by an iron model complex
journal, September 2013

  • Anderson, John S.; Rittle, Jonathan; Peters, Jonas C.
  • Nature, Vol. 501, Issue 7465
  • DOI: 10.1038/nature12435

Electrosynthesis of ammonia
journal, October 1985

  • Pickett, Christopher J.; Talarmin, Jean
  • Nature, Vol. 317, Issue 6038
  • DOI: 10.1038/317652a0

Progress in the Electrochemical Synthesis of Ammonia
journal, May 2017


Insight into the Iron–Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands
journal, June 2016

  • Čorić, Ilija; Holland, Patrick L.
  • Journal of the American Chemical Society, Vol. 138, Issue 23
  • DOI: 10.1021/jacs.6b00747

Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea
journal, December 2012

  • Vajrala, N.; Martens-Habbena, W.; Sayavedra-Soto, L. A.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 3
  • DOI: 10.1073/pnas.1214272110

Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage
journal, January 2014

  • Hoffman, Brian M.; Lukoyanov, Dmitriy; Yang, Zhi-Yong
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr400641x

A 1000 MWth boiler for chemical-looping combustion of solid fuels – Discussion of design and costs
journal, November 2015


Structural conservation of the B subunit in the ammonia monooxygenase/particulate methane monooxygenase superfamily: Structure of an Archaeal amoB Domain
journal, March 2014

  • Lawton, Thomas J.; Ham, Jungwha; Sun, Tianlin
  • Proteins: Structure, Function, and Bioinformatics, Vol. 82, Issue 9
  • DOI: 10.1002/prot.24535

Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage
journal, January 2015

  • Michalsky, R.; Avram, A. M.; Peterson, B. A.
  • Chemical Science, Vol. 6, Issue 7
  • DOI: 10.1039/C5SC00789E

Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water
journal, March 2012

  • Chaplin, Brian P.; Reinhard, Martin; Schneider, William F.
  • Environmental Science & Technology, Vol. 46, Issue 7
  • DOI: 10.1021/es204087q

Ammonia Production via a Two-Step Al 2 O 3 /AlN Thermochemical Cycle. 1. Thermodynamic, Environmental, and Economic Analyses
journal, March 2007

  • Gálvez, M. E.; Halmann, M.; Steinfeld, A.
  • Industrial & Engineering Chemistry Research, Vol. 46, Issue 7
  • DOI: 10.1021/ie061550u

Nitrogen Cycle Electrocatalysis
journal, June 2009

  • Rosca, Victor; Duca, Matteo; de Groot, Matheus T.
  • Chemical Reviews, Vol. 109, Issue 6
  • DOI: 10.1021/cr8003696

Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis
journal, April 2018


Catalyst Design by Interpolation in the Periodic Table:  Bimetallic Ammonia Synthesis Catalysts
journal, August 2001

  • Jacobsen, Claus J. H.; Dahl, Søren; Clausen, Bjerne S.
  • Journal of the American Chemical Society, Vol. 123, Issue 34
  • DOI: 10.1021/ja010963d

Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH 3 ) under ambient conditions
journal, January 2018

  • Guo, Chunxian; Ran, Jingrun; Vasileff, Anthony
  • Energy & Environmental Science, Vol. 11, Issue 1
  • DOI: 10.1039/C7EE02220D

NO reduction by H2 over promoted Pt catalysts
journal, June 1997


Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia
journal, May 2016

  • Liu, Jian; Kelley, Matthew S.; Wu, Weiqiang
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 20
  • DOI: 10.1073/pnas.1605512113

Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids
journal, January 2017

  • Zhou, Fengling; Azofra, Luis Miguel; Ali, Muataz
  • Energy & Environmental Science, Vol. 10, Issue 12
  • DOI: 10.1039/C7EE02716H

Catalytic N 2 -to-NH 3 Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET
journal, February 2017

  • Chalkley, Matthew J.; Del Castillo, Trevor J.; Matson, Benjamin D.
  • ACS Central Science, Vol. 3, Issue 3
  • DOI: 10.1021/acscentsci.7b00014

Bis(μ-oxo)dicopper in Cu-ZSM-5 and Its Role in the Decomposition of NO:  A Combined in Situ XAFS, UV−Vis−Near-IR, and Kinetic Study
journal, June 2003

  • Groothaert, Marijke H.; van Bokhoven, Jeroen A.; Battiston, Andrea A.
  • Journal of the American Chemical Society, Vol. 125, Issue 25
  • DOI: 10.1021/ja029684w

Plasma–catalysis: the known knowns, the known unknowns and the unknown unknowns
journal, May 2016


Uncoupling Nitrogenase: Catalytic Reduction of Hydrazine to Ammonia by a MoFe Protein in the Absence of Fe Protein-ATP
journal, September 2010

  • Danyal, Karamatullah; Inglet, Boyd S.; Vincent, Kylie A.
  • Journal of the American Chemical Society, Vol. 132, Issue 38
  • DOI: 10.1021/ja1067178

A trans -Hyponitrite Intermediate in the Reductive Coupling and Deoxygenation of Nitric Oxide by a Tricopper–Lewis Acid Complex
journal, April 2016

  • Lionetti, Davide; de Ruiter, Graham; Agapie, Theodor
  • Journal of the American Chemical Society, Vol. 138, Issue 15
  • DOI: 10.1021/jacs.6b01083

A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia
journal, December 2010

  • Arashiba, Kazuya; Miyake, Yoshihiro; Nishibayashi, Yoshiaki
  • Nature Chemistry, Vol. 3, Issue 2
  • DOI: 10.1038/nchem.906

The In Vivo Potential-Regulated Protective Protein of Nitrogenase in Azotobacter vinelandii Supports Aerobic Bioelectrochemical Dinitrogen Reduction In Vitro
journal, June 2017

  • Milton, Ross D.; Cai, Rong; Sahin, Selmihan
  • Journal of the American Chemical Society, Vol. 139, Issue 26
  • DOI: 10.1021/jacs.7b04893

Dynamic multinuclear sites formed by mobilized copper ions in NO x selective catalytic reduction
journal, August 2017

  • Paolucci, Christopher; Khurana, Ishant; Parekh, Atish A.
  • Science, Vol. 357, Issue 6354
  • DOI: 10.1126/science.aan5630

Detonator of the population explosion
journal, July 1999


Complete nitrification by Nitrospira bacteria
journal, November 2015

  • Daims, Holger; Lebedeva, Elena V.; Pjevac, Petra
  • Nature, Vol. 528, Issue 7583
  • DOI: 10.1038/nature16461

Recent advances in the chemistry of nitrogen fixation
journal, December 1978

  • Chatt, Joseph.; Dilworth, Jonathan R.; Richards, Raymond L.
  • Chemical Reviews, Vol. 78, Issue 6
  • DOI: 10.1021/cr60316a001

Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission
journal, November 2016

  • Caranto, Jonathan D.; Vilbert, Avery C.; Lancaster, Kyle M.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 51
  • DOI: 10.1073/pnas.1611051113

A review of the existing and alternative methods for greener nitrogen fixation
journal, April 2015

  • Cherkasov, N.; Ibhadon, A. O.; Fitzpatrick, P.
  • Chemical Engineering and Processing: Process Intensification, Vol. 90
  • DOI: 10.1016/j.cep.2015.02.004

Photon-Driven Nitrogen Fixation: Current Progress, Thermodynamic Considerations, and Future Outlook
journal, March 2017


Twenty-five years after introduction of automotive catalysts: what next?
journal, September 2000


The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules
journal, June 1981


Catalytic Reduction of Dinitrogen to Ammonia by Use of Molybdenum–Nitride Complexes Bearing a Tridentate Triphosphine as Catalysts
journal, April 2015

  • Arashiba, Kazuya; Kinoshita, Eriko; Kuriyama, Shogo
  • Journal of the American Chemical Society, Vol. 137, Issue 17
  • DOI: 10.1021/jacs.5b02579

Ammonia synthesis from N 2 and H 2 O using a lithium cycling electrification strategy at atmospheric pressure
journal, January 2017

  • McEnaney, Joshua M.; Singh, Aayush R.; Schwalbe, Jay A.
  • Energy & Environmental Science, Vol. 10, Issue 7
  • DOI: 10.1039/C7EE01126A

Isolation of an autotrophic ammonia-oxidizing marine archaeon
journal, September 2005

  • Könneke, Martin; Bernhard, Anne E.; de la Torre, José R.
  • Nature, Vol. 437, Issue 7058
  • DOI: 10.1038/nature03911

Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center
journal, July 2003


Keeping the nitrogen-fixation dream alive
journal, March 2017

  • Vicente, Emilio Jimenez; Dean, Dennis R.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 12
  • DOI: 10.1073/pnas.1701560114

Energy efficiency improvements in ammonia production—perspectives and uncertainties
journal, October 2005


Mechanism and modeling of nitrogen chemistry in combustion
journal, January 1989


Catalytic removal of NO
journal, December 1998


How a century of ammonia synthesis changed the world
journal, September 2008

  • Erisman, Jan Willem; Sutton, Mark A.; Galloway, James
  • Nature Geoscience, Vol. 1, Issue 10
  • DOI: 10.1038/ngeo325

Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3
journal, August 2014


Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea
journal, April 2010

  • Walker, C. B.; de la Torre, J. R.; Klotz, M. G.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 19
  • DOI: 10.1073/pnas.0913533107

Mechanism of Nitrogenase H 2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects
journal, September 2017

  • Khadka, Nimesh; Milton, Ross D.; Shaw, Sudipta
  • Journal of the American Chemical Society, Vol. 139, Issue 38
  • DOI: 10.1021/jacs.7b07311

Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid
journal, April 2016


Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H 2 /N 2 Fuel Cell
journal, February 2017

  • Milton, Ross D.; Cai, Rong; Abdellaoui, Sofiene
  • Angewandte Chemie International Edition, Vol. 56, Issue 10
  • DOI: 10.1002/anie.201612500

Detailed study of the plasma-activated catalytic generation of ammonia in N2-H2 plasmas
journal, February 2007

  • van Helden, J. H.; Wagemans, W.; Yagci, G.
  • Journal of Applied Physics, Vol. 101, Issue 4
  • DOI: 10.1063/1.2645828

A comprehensive review on PEM water electrolysis
journal, April 2013

  • Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151

The Brønsted–Evans–Polanyi Relation and the Volcano Plot for Ammonia Synthesis over Transition Metal Catalysts
journal, January 2001

  • Logadottir, A.; Rod, T. H.; Nørskov, J. K.
  • Journal of Catalysis, Vol. 197, Issue 2
  • DOI: 10.1006/jcat.2000.3087

Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H 2 /N 2 Fuel Cell
journal, February 2017

  • Milton, Ross D.; Cai, Rong; Abdellaoui, Sofiene
  • Angewandte Chemie, Vol. 129, Issue 10
  • DOI: 10.1002/ange.201612500

Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center
journal, January 2006

  • Schrock, Richard R.
  • Accounts of Chemical Research, Vol. 39, Issue 2
  • DOI: 10.1021/ar068000c

Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center
journal, December 2005

  • Schrock, Richard R.
  • Accounts of Chemical Research, Vol. 38, Issue 12
  • DOI: 10.1021/ar0501121

Works referencing / citing this record:

Tuning the Catalytic Preference of Ruthenium Catalysts for Nitrogen Reduction by Atomic Dispersion
journal, November 2019


Atomic Nb Anchoring on Graphdiyne as a New Potential Electrocatalyst for Nitrogen Fixation: A Computational View
journal, September 2019

  • Han, Xing‐Qi; Lang, Zhong‐Ling; Yan, Li‐Kai
  • Advanced Theory and Simulations, Vol. 2, Issue 12
  • DOI: 10.1002/adts.201900132

Electrochemical Hydrogenation with Gaseous Ammonia
journal, January 2019


Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction
journal, June 2019

  • Bhattacharya, Papri; Heiden, Zachariah M.; Chambers, Geoffrey M.
  • Angewandte Chemie, Vol. 131, Issue 34
  • DOI: 10.1002/ange.201903221

High Efficiency Electrochemical Nitrogen Fixation Achieved with a Lower Pressure Reaction System by Changing the Chemical Equilibrium
journal, September 2019


Crystal‐Phase‐Engineered PdCu Electrocatalyst for Enhanced Ammonia Synthesis
journal, January 2020


The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbon‐Based Catalysts for Electrocatalytic Nitrogen Reduction
journal, March 2020


Aryldiazonium Salts as Nitrogen-Based Lewis Acids: Facile Synthesis of Tuneable Azophosphonium Salts
journal, August 2018

  • Habraken, Evi R. M.; van Leest, Nicolaas P.; Hooijschuur, Pim
  • Angewandte Chemie International Edition, Vol. 57, Issue 37
  • DOI: 10.1002/anie.201806913

Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation
journal, January 2019

  • Han, Lili; Liu, Xijun; Chen, Jinping
  • Angewandte Chemie International Edition, Vol. 58, Issue 8
  • DOI: 10.1002/anie.201811728

Ammonia Synthesis Under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets
journal, January 2019

  • Zhang, Lili; Ding, Liang-Xin; Chen, Gao-Feng
  • Angewandte Chemie International Edition, Vol. 58, Issue 9
  • DOI: 10.1002/anie.201813174

Electrochemical Hydrogenation with Gaseous Ammonia
journal, January 2019

  • Li, Jin; He, Lingfeng; Liu, Xu
  • Angewandte Chemie International Edition, Vol. 58, Issue 6
  • DOI: 10.1002/anie.201813464

Crystal‐Phase‐Engineered PdCu Electrocatalyst for Enhanced Ammonia Synthesis
journal, February 2020

  • Tong, Wu; Huang, Bolong; Wang, Pengtang
  • Angewandte Chemie International Edition, Vol. 59, Issue 7
  • DOI: 10.1002/anie.201913122

The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbon‐Based Catalysts for Electrocatalytic Nitrogen Reduction
journal, February 2020

  • Yang, Yuanyuan; Zhang, Lifu; Hu, Zhenpeng
  • Angewandte Chemie International Edition, Vol. 59, Issue 11
  • DOI: 10.1002/anie.201915001

Transition‐Metal–Boron Intermetallics with Strong Interatomic d–sp Orbital Hybridization for High‐Performance Electrocatalysis
journal, January 2020

  • Ai, Xuan; Zou, Xu; Chen, Hui
  • Angewandte Chemie International Edition, Vol. 59, Issue 10
  • DOI: 10.1002/anie.201915663

Synergistic Promotion of the Electrochemical Reduction of Nitrogen to Ammonia by Phosphorus and Potassium
journal, October 2019


Ambient Electrosynthesis of Ammonia on a Core–Shell‐Structured Au@CeO 2 Catalyst: Contribution of Oxygen Vacancies in CeO 2
journal, March 2019

  • Liu, Guoqiang; Cui, Zhiqing; Han, Miaomiao
  • Chemistry – A European Journal, Vol. 25, Issue 23
  • DOI: 10.1002/chem.201806377

Ambient Electrochemical Synthesis of Ammonia from Nitrogen and Water Catalyzed by Flower-Like Gold Microstructures
journal, September 2018


Electrochemical Fabrication of Porous Au Film on Ni Foam for Nitrogen Reduction to Ammonia
journal, January 2019


Defect Engineering Strategies for Nitrogen Reduction Reactions under Ambient Conditions
journal, October 2018


Computational Screening of Efficient Single‐Atom Catalysts Based on Graphitic Carbon Nitride (g‐C 3 N 4 ) for Nitrogen Electroreduction
journal, October 2018


Recent Progress on Electrocatalyst and Photocatalyst Design for Nitrogen Reduction
journal, October 2018


Is It Appropriate to Use the Nafion Membrane in Electrocatalytic N 2 Reduction?
journal, August 2019


Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals
journal, August 2019

  • Basdogan, Yasemin; Maldonado, Alex M.; Keith, John A.
  • WIREs Computational Molecular Science, Vol. 10, Issue 2
  • DOI: 10.1002/wcms.1446

3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion
journal, March 2019


Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework
journal, November 2019


The technological and economic prospects for CO2 utilization and removal
journal, November 2019


Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water
journal, March 2019


Electrochemical nitrogen reduction to ammonia at ambient conditions on nitrogen and phosphorus co-doped porous carbon
journal, January 2019

  • Song, Pengfei; Wang, Hao; Kang, Li
  • Chemical Communications, Vol. 55, Issue 5
  • DOI: 10.1039/c8cc09256g

Trimetallic PdCuIr with long-spined sea-urchin-like morphology for ambient electroreduction of nitrogen to ammonia
journal, January 2019

  • Kumar, Rajaiah Dhilip; Wang, Ziqiang; Li, Chunjie
  • Journal of Materials Chemistry A, Vol. 7, Issue 7
  • DOI: 10.1039/c8ta10562f

Cu doping in CeO 2 to form multiple oxygen vacancies for dramatically enhanced ambient N 2 reduction performance
journal, January 2019

  • Zhang, Shengbo; Zhao, Cuijiao; Liu, Yanyan
  • Chemical Communications, Vol. 55, Issue 20
  • DOI: 10.1039/c9cc00123a

Synthesis of ammonia via electrochemical nitrogen reduction on high-index faceted Au nanoparticles with a high faradaic efficiency
journal, January 2019

  • Tan, Lianqiao; Yang, Na; Huang, Xun
  • Chemical Communications, Vol. 55, Issue 96
  • DOI: 10.1039/c9cc06132k

High-efficiency electrocatalyst for N 2 conversion to NH 3 based on Au nanoparticles loaded on defective WO 3−x
journal, January 2019

  • Li, Youzeng; Yan, Pengfei; Chen, Jun
  • Chemical Communications, Vol. 55, Issue 88
  • DOI: 10.1039/c9cc06550d

Triple hydrogen atom abstraction from Mn–NH 3 complexes results in cyclophosphazenium cations
journal, January 2019

  • Cook, Brian J.; Johnson, Samantha I.; Chambers, Geoffrey M.
  • Chemical Communications, Vol. 55, Issue 93
  • DOI: 10.1039/c9cc06915a

How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully
journal, January 2019

  • Tang, Cheng; Qiao, Shi-Zhang
  • Chemical Society Reviews, Vol. 48, Issue 12
  • DOI: 10.1039/c9cs00280d

Chemical looping beyond combustion – a perspective
journal, January 2020

  • Zhu, Xing; Imtiaz, Qasim; Donat, Felix
  • Energy & Environmental Science, Vol. 13, Issue 3
  • DOI: 10.1039/c9ee03793d

Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation
journal, January 2019

  • Mao, Chengliang; Wang, Jiaxian; Zou, Yunjie
  • Green Chemistry, Vol. 21, Issue 11
  • DOI: 10.1039/c9gc01010f

Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation
journal, January 2019

  • Ou, Pengfei; Zhou, Xiao; Meng, Fanchao
  • Nanoscale, Vol. 11, Issue 28
  • DOI: 10.1039/c9nr02586c

Excitonic Au 4 Ru 2 (PPh 3 ) 2 (SC 2 H 4 Ph) 8 cluster for light-driven dinitrogen fixation
journal, January 2020

  • Sun, Yongnan; Pei, Wei; Xie, Mingcai
  • Chemical Science, Vol. 11, Issue 9
  • DOI: 10.1039/c9sc06424a

Bimetallic Ag 3 Cu porous networks for ambient electrolysis of nitrogen to ammonia
journal, January 2019

  • Yu, Hongjie; Wang, Ziqiang; Yang, Dandan
  • Journal of Materials Chemistry A, Vol. 7, Issue 20
  • DOI: 10.1039/c9ta03297e

Theoretical insights into nonprecious oxygen-evolution active sites in Ti–Ir-Based perovskite solid solution electrocatalysts
journal, January 2020

  • Shi, Lei; Chen, Hui; Liang, Xiao
  • Journal of Materials Chemistry A, Vol. 8, Issue 1
  • DOI: 10.1039/c9ta10059h

Electrochemical synthesis of nitric acid from air and ammonia through waste utilization
journal, February 2019

  • Wang, Yuting; Yu, Yifu; Jia, Ranran
  • National Science Review, Vol. 6, Issue 4
  • DOI: 10.1093/nsr/nwz019

Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering
journal, November 2019


Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation
journal, January 2019

  • Liu, Botong; Yasin, Alhassan S.; Musho, Terrence
  • Journal of The Electrochemical Society, Vol. 166, Issue 5
  • DOI: 10.1149/2.0151905jes

Selective Electrochemical Reduction of Nitrogen to Ammonia by Adjusting the Three-Phase Interface
journal, November 2019


A General Strategy to Glassy M‐Te (M = Ru, Rh, Ir) Porous Nanorods for Efficient Electrochemical N 2 Fixation
journal, February 2020


Atomic Modulation, Structural Design, and Systematic Optimization for Efficient Electrochemical Nitrogen Reduction
journal, January 2020


Aryldiazonium Salts as Nitrogen-Based Lewis Acids: Facile Synthesis of Tuneable Azophosphonium Salts
journal, August 2018

  • Habraken, Evi R. M.; van Leest, Nicolaas P.; Hooijschuur, Pim
  • Angewandte Chemie, Vol. 130, Issue 37
  • DOI: 10.1002/ange.201806913

A Combined Theory‐Experiment Analysis of the Surface Species in Lithium‐Mediated NH 3 Electrosynthesis
journal, January 2020

  • Schwalbe, Jay A.; Statt, Michael J.; Chosy, Cullen
  • ChemElectroChem, Vol. 7, Issue 7
  • DOI: 10.1002/celc.201902124

Formation of carbon–nitrogen bonds in carbon monoxide electrolysis
journal, August 2019


One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for electrocatalytic nitrogen reduction to ammonia
journal, January 2019

  • Wang, Hongjing; Li, Yinghao; Li, Chunjie
  • Journal of Materials Chemistry A, Vol. 7, Issue 2
  • DOI: 10.1039/c8ta09482a

B 4 C nanosheets decorated with in situ -derived boron-doped graphene quantum dots for high-efficiency ambient N 2 fixation
journal, January 2019

  • Qiu, Wei-Bin; Luo, Yu-Xi; Liang, Ru-Ping
  • Chemical Communications, Vol. 55, Issue 51
  • DOI: 10.1039/c9cc03413g

Morphology-dependent electrocatalytic nitrogen reduction on Ag triangular nanoplates
journal, January 2019

  • Gao, Wen-Yan; Hao, Yu-Chen; Su, Xin
  • Chemical Communications, Vol. 55, Issue 72
  • DOI: 10.1039/c9cc04691g

Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction via Se atom doping
journal, January 2019

  • Zhou, Hong Yu; Li, Jian Chen; Wen, Zi
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 27
  • DOI: 10.1039/c9cp02733e

Understanding electro-catalysis by using density functional theory
journal, January 2019

  • Chen, Z. W.; Chen, L. X.; Wen, Z.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 43
  • DOI: 10.1039/c9cp04430b

Selective decontamination of the reactive air pollutant nitrous acid via node-linker cooperativity in a metal–organic framework
journal, January 2019

  • McGrath, Devon T.; Ryan, Michaela D.; MacInnis, John J.
  • Chemical Science, Vol. 10, Issue 21
  • DOI: 10.1039/c9sc01357a

Electron distribution tuning of fluorine-doped carbon for ammonia electrosynthesis
journal, January 2019

  • Yuan, Di; Wei, Zengxi; Han, Peng
  • Journal of Materials Chemistry A, Vol. 7, Issue 28
  • DOI: 10.1039/c9ta04141a

Facile, cost-effective plasma synthesis of self-supportive FeS x on Fe foam for efficient electrochemical reduction of N 2 under ambient conditions
journal, January 2019

  • Xiong, Wei; Guo, Zheng; Zhao, Shijun
  • Journal of Materials Chemistry A, Vol. 7, Issue 34
  • DOI: 10.1039/c9ta07790a

W supported on g-CN manifests high activity and selectivity for N 2 electroreduction to NH 3
journal, January 2020

  • Wang, Shuhua; Wei, Wei; Lv, Xingshuai
  • Journal of Materials Chemistry A, Vol. 8, Issue 3
  • DOI: 10.1039/c9ta10935h

Complete cleavage of the N≡N triple bond by Ta 2 N + via degenerate ligand exchange at ambient temperature: A perfect catalytic cycle
journal, October 2019

  • Geng, Caiyun; Li, Jilai; Weiske, Thomas
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 43
  • DOI: 10.1073/pnas.1913664116

Specific energy cost for nitrogen fixation as NO x using DC glow discharge in air
journal, November 2019

  • Pei, Xuekai; Gidon, Dogan; Graves, David B.
  • Journal of Physics D: Applied Physics, Vol. 53, Issue 4
  • DOI: 10.1088/1361-6463/ab5095

Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions
journal, October 2018

  • Cheng, Hui; Ding, Liang-Xin; Chen, Gao-Feng
  • Advanced Materials, Vol. 30, Issue 46
  • DOI: 10.1002/adma.201803694

High Efficiency Electrochemical Nitrogen Fixation Achieved with a Lower Pressure Reaction System by Changing the Chemical Equilibrium
journal, September 2019

  • Cheng, Hui; Cui, Peixin; Wang, Fangrui
  • Angewandte Chemie International Edition, Vol. 58, Issue 43
  • DOI: 10.1002/anie.201910658

A Combined Theory‐Experiment Analysis of the Surface Species in Lithium‐Mediated NH 3 Electrosynthesis
journal, April 2020

  • Schwalbe, Jay A.; Statt, Michael J.; Chosy, Cullen
  • ChemElectroChem, Vol. 7, Issue 7
  • DOI: 10.1002/celc.202000265

Advanced Non‐metallic Catalysts for Electrochemical Nitrogen Reduction under Ambient Conditions
journal, July 2019

  • Zhang, Lili; Chen, Gao‐Feng; Ding, Liang‐Xin
  • Chemistry – A European Journal, Vol. 25, Issue 54
  • DOI: 10.1002/chem.201901668

Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design
journal, January 2019

  • Guo, Wenhan; Zhang, Kexin; Liang, Zibin
  • Chemical Society Reviews, Vol. 48, Issue 24
  • DOI: 10.1039/c9cs00159j

Pt-embedded in monolayer g-C 3 N 4 as a promising single-atom electrocatalyst for ammonia synthesis
journal, January 2019

  • Yin, Hui; Li, Shu-Long; Gan, Li-Yong
  • Journal of Materials Chemistry A, Vol. 7, Issue 19
  • DOI: 10.1039/c9ta01624d

Atomically dispersed metal dimer species with selective catalytic activity for nitrogen electrochemical reduction
journal, January 2019

  • Li, Yang; Zhang, Qi; Li, Can
  • Journal of Materials Chemistry A, Vol. 7, Issue 39
  • DOI: 10.1039/c9ta07845b

Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation
journal, January 2019


Enhancement of Selective Fixation of Dinitrogen to Ammonia under Modal Strong Coupling Conditions
journal, April 2020

  • Oshikiri, Tomoya; Shi, Xu; Misawa, Hiroaki
  • European Journal of Inorganic Chemistry, Vol. 2020, Issue 15-16
  • DOI: 10.1002/ejic.202000340

Ammonia Synthesis Under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets
journal, January 2019

  • Zhang, Lili; Ding, Liang‐Xin; Chen, Gao‐Feng
  • Angewandte Chemie, Vol. 131, Issue 9
  • DOI: 10.1002/ange.201813174

Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction
journal, June 2019

  • Bhattacharya, Papri; Heiden, Zachariah M.; Chambers, Geoffrey M.
  • Angewandte Chemie International Edition, Vol. 58, Issue 34
  • DOI: 10.1002/anie.201903221

Fluorine-free Ti 3 C 2 T x (T = O, OH) nanosheets (∼50–100 nm) for nitrogen fixation under ambient conditions
journal, January 2019

  • Li, Tengfei; Yan, Xudong; Huang, Lujun
  • Journal of Materials Chemistry A, Vol. 7, Issue 24
  • DOI: 10.1039/c9ta03254a

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.