skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr 0.2Ti 0.8O 3 Thin Films

Abstract

Many energy conversion, sensing, and microelectronic applications based on ferroic materials are determined by the domain structure evolution under applied stimuli. New hyperspectral, multidimensional spectroscopic techniques now probe dynamic responses at relevant length and time scales to provide an understanding of how these nanoscale domain structures impact macroscopic properties. Such approaches, however, remain limited in use because of the difficulties that exist in extracting and visualizing scientific insights from these complex datasets. Using multidimensional band-excitation scanning probe spectroscopy and adapting tools from both computer vision and machine learning, an automated workflow is developed to featurize, detect, and classify signatures of ferroelectric/ferroelastic switching processes in complex ferroelectric domain structures. This approach enables the identification and nanoscale visualization of varied modes of response and a pathway to statistically meaningful quantification of the differences between those modes. Lastly, among other things, the importance of domain geometry is spatially visualized for enhancing nanoscale electromechanical energy conversion.

Authors:
ORCiD logo [1];  [2];  [3];  [1];  [4];  [1];  [1]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [6];  [7]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science & Engineering
  2. Univ. of Texas Arlington, Arlington, TX (United States). Dept. of Materials Science and Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Inst. for Functional Imaging of Materials
  3. Univ. of California, Berkeley, CA (United States). Dept. of Astronomy
  4. Univ. of California, Berkeley, CA (United States). Berkeley Inst. of Data Science
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Inst. for Functional Imaging of Materials
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)
  7. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science & Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); US Army Research Office (ARO); National Science Foundation (NSF); Gordon and Betty Moore Foundation; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1439928
Alternate Identifier(s):
OSTI ID: 1439355; OSTI ID: 1506335
Grant/Contract Number:  
AC05-00OR22725; SC0012375; W911NF-14-1-0104; AC02-05CH11231; DMR-1708615; OISE-1545907; DMR-1451219; 1251274
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 28; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; domain structures; ferroelectric materials; machine learning; PZT; scanning‐probe microscopy

Citation Formats

Agar, Joshua C., Cao, Ye, Naul, Brett, Pandya, Shishir, van der Walt, Stefan, Luo, Aileen I., Maher, Joshua T., Balke, Nina, Jesse, Stephen, Kalinin, Sergei V., Vasudevan, Rama K., and Martin, Lane W. Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr0.2Ti0.8O3 Thin Films. United States: N. p., 2018. Web. doi:10.1002/adma.201800701.
Agar, Joshua C., Cao, Ye, Naul, Brett, Pandya, Shishir, van der Walt, Stefan, Luo, Aileen I., Maher, Joshua T., Balke, Nina, Jesse, Stephen, Kalinin, Sergei V., Vasudevan, Rama K., & Martin, Lane W. Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr0.2Ti0.8O3 Thin Films. United States. doi:10.1002/adma.201800701.
Agar, Joshua C., Cao, Ye, Naul, Brett, Pandya, Shishir, van der Walt, Stefan, Luo, Aileen I., Maher, Joshua T., Balke, Nina, Jesse, Stephen, Kalinin, Sergei V., Vasudevan, Rama K., and Martin, Lane W. Mon . "Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr0.2Ti0.8O3 Thin Films". United States. doi:10.1002/adma.201800701. https://www.osti.gov/servlets/purl/1439928.
@article{osti_1439928,
title = {Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr0.2Ti0.8O3 Thin Films},
author = {Agar, Joshua C. and Cao, Ye and Naul, Brett and Pandya, Shishir and van der Walt, Stefan and Luo, Aileen I. and Maher, Joshua T. and Balke, Nina and Jesse, Stephen and Kalinin, Sergei V. and Vasudevan, Rama K. and Martin, Lane W.},
abstractNote = {Many energy conversion, sensing, and microelectronic applications based on ferroic materials are determined by the domain structure evolution under applied stimuli. New hyperspectral, multidimensional spectroscopic techniques now probe dynamic responses at relevant length and time scales to provide an understanding of how these nanoscale domain structures impact macroscopic properties. Such approaches, however, remain limited in use because of the difficulties that exist in extracting and visualizing scientific insights from these complex datasets. Using multidimensional band-excitation scanning probe spectroscopy and adapting tools from both computer vision and machine learning, an automated workflow is developed to featurize, detect, and classify signatures of ferroelectric/ferroelastic switching processes in complex ferroelectric domain structures. This approach enables the identification and nanoscale visualization of varied modes of response and a pathway to statistically meaningful quantification of the differences between those modes. Lastly, among other things, the importance of domain geometry is spatially visualized for enhancing nanoscale electromechanical energy conversion.},
doi = {10.1002/adma.201800701},
journal = {Advanced Materials},
number = 28,
volume = 30,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

The giant electromechanical response in ferroelectric relaxors as a critical phenomenon
journal, June 2006


Effect of 90° Domain Walls on the Low-Field Permittivity of PbZr 0.2 Ti 0.8 O 3 Thin Films
journal, April 2012


Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography
journal, May 2016

  • Jesse, S.; Chi, M.; Belianinov, A.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26348

Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution
journal, September 2013

  • Vasudevan, R. K.; Okatan, M. Baris; Rajapaksa, I.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02677

Another efficient algorithm for convex hulls in two dimensions
journal, December 1979


Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films
journal, February 2016

  • Agar, J. C.; Damodaran, A. R.; Okatan, M. B.
  • Nature Materials, Vol. 15, Issue 5
  • DOI: 10.1038/nmat4567

Three-State Ferroelastic Switching and Large Electromechanical Responses in PbTiO 3 Thin Films
journal, July 2017

  • Damodaran, Anoop R.; Pandya, Shishir; Agar, Josh C.
  • Advanced Materials, Vol. 29, Issue 37
  • DOI: 10.1002/adma.201702069

Ferroelastic switching for nanoscale non-volatile magnetoelectric devices
journal, February 2010

  • Baek, S. H.; Jang, H. W.; Folkman, C. M.
  • Nature Materials, Vol. 9, Issue 4
  • DOI: 10.1038/nmat2703

Big, Deep, and Smart Data in Scanning Probe Microscopy
journal, September 2016


Nanoscale Origins of Nonlinear Behavior in Ferroic Thin Films
journal, August 2012

  • Vasudevan, Rama K.; Okatan, M. Baris; Duan, Chen
  • Advanced Functional Materials, Vol. 23, Issue 1
  • DOI: 10.1002/adfm.201201025

Nucleation and growth mechanism of ferroelectric domain-wall motion
journal, October 2007

  • Shin, Young-Han; Grinberg, Ilya; Chen, I-Wei
  • Nature, Vol. 449, Issue 7164
  • DOI: 10.1038/nature06165

Big–deep–smart data in imaging for guiding materials design
journal, September 2015

  • Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4395

How Fast-Folding Proteins Fold
journal, October 2011


Phases and Interfaces from Real Space Atomically Resolved Data: Physics-Based Deep Data Image Analysis
journal, August 2016


Data mining graphene: correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects
journal, November 2016


Effect of 90° Domain Walls and Thermal Expansion Mismatch on the Pyroelectric Properties of Epitaxial PbZr 0.2 Ti 0.8 O 3 Thin Films
journal, December 2012


Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy
journal, November 2012

  • Strelcov, E.; Kim, Y.; Yang, J. C.
  • Applied Physics Letters, Vol. 101, Issue 19
  • DOI: 10.1063/1.4764939

Strain mapping at nanometer resolution using advanced nano-beam electron diffraction
journal, June 2015

  • Ozdol, V. B.; Gammer, C.; Jin, X. G.
  • Applied Physics Letters, Vol. 106, Issue 25
  • DOI: 10.1063/1.4922994

Multidimensional dynamic piezoresponse measurements: Unraveling local relaxation behavior in relaxor-ferroelectrics via big data
journal, August 2015

  • Vasudevan, Rama K.; Zhang, Shujun; Baris Okatan, M.
  • Journal of Applied Physics, Vol. 118, Issue 7
  • DOI: 10.1063/1.4927803

Ferroelectric polarization reversal via successive ferroelastic transitions
journal, October 2014

  • Xu, Ruijuan; Liu, Shi; Grinberg, Ilya
  • Nature Materials, Vol. 14, Issue 1
  • DOI: 10.1038/nmat4119

Dynamic X-ray diffraction imaging of the ferroelectric response in bismuth ferrite
journal, March 2017

  • Laanait, Nouamane; Saenrang, Wittawat; Zhou, Hua
  • Advanced Structural and Chemical Imaging, Vol. 3, Issue 1
  • DOI: 10.1186/s40679-017-0044-3

Rapid mapping of polarization switching through complete information acquisition
journal, December 2016

  • Somnath, Suhas; Belianinov, Alex; Kalinin, Sergei V.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13290

Web-scale k-means clustering
conference, January 2010

  • Sculley, D.
  • Proceedings of the 19th international conference on World wide web - WWW '10
  • DOI: 10.1145/1772690.1772862

Materials science with large-scale data and informatics: Unlocking new opportunities
journal, May 2016

  • Hill, Joanne; Mulholland, Gregory; Persson, Kristin
  • MRS Bulletin, Vol. 41, Issue 5
  • DOI: 10.1557/mrs.2016.93

Probing the Role of Single Defects on the Thermodynamics of Electric-Field Induced Phase Transitions
journal, April 2008


A recurrent neural network for classification of unevenly sampled variable stars
journal, November 2017


Data clustering: a review
journal, September 1999

  • Jain, A. K.; Murty, M. N.; Flynn, P. J.
  • ACM Computing Surveys, Vol. 31, Issue 3, p. 264-323
  • DOI: 10.1145/331499.331504

Nanoscale Structure and Mechanism for Enhanced Electromechanical Response of Highly Strained BiFeO3 Thin Films
journal, May 2011

  • Damodaran, Anoop R.; Liang, Chen-Wei; He, Qing
  • Advanced Materials, Vol. 23, Issue 28, p. 3170-3175
  • DOI: 10.1002/adma.201101164

Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films
journal, January 2001

  • Xu, F.; Trolier-McKinstry, S.; Ren, W.
  • Journal of Applied Physics, Vol. 89, Issue 2
  • DOI: 10.1063/1.1325005

Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets
journal, May 2015

  • Belianinov, Alex; Vasudevan, Rama; Strelcov, Evgheni
  • Advanced Structural and Chemical Imaging, Vol. 1, Issue 1
  • DOI: 10.1186/s40679-015-0006-6

Machine learning applications in genetics and genomics
journal, May 2015

  • Libbrecht, Maxwell W.; Noble, William Stafford
  • Nature Reviews Genetics, Vol. 16, Issue 6
  • DOI: 10.1038/nrg3920

Machine-learning-assisted materials discovery using failed experiments
journal, May 2016

  • Raccuglia, Paul; Elbert, Katherine C.; Adler, Philip D. F.
  • Nature, Vol. 533, Issue 7601
  • DOI: 10.1038/nature17439

Machine learning phases of matter
journal, February 2017

  • Carrasquilla, Juan; Melko, Roger G.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4035

Theory-Guided Machine Learning in Materials Science
journal, June 2016


Imaging via complete cantilever dynamic detection: general dynamic mode imaging and spectroscopy in scanning probe microscopy
journal, September 2016


Domain Dynamics During Ferroelectric Switching
journal, November 2011